Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

First Semester

EE18152 - BASIC ELECTRICAL ENGINEERING

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS

COURSE OUTCOMES

CO 1 Apply various circuit analysis technique to solve problems in DC and AC Circuits.
CO 2 Apply various network reduction technique and network theorem to solve problems in DC and AC Circuits.
CO 3 Illustrate the construction, working principle, characteristics and applications of Transformer and Separately excited DC Motor.
CO 4 Illustrate the construction, working principle, characteristics and applications of Induction motor and Synchronous Generator.
CO 5 Explore the significance of the Electrical Installation and different power converter.

PART- A (10 x $2=20$ Marks)
 (Answer all Questions)

1.

Solve the given circuit to determine Req.
2. Summarize the formulas required for converting delta network to star network. $\mathbf{1} \quad \mathbf{2}$
3. What are the limitations of Reciprocity theorem? $\quad 2 \quad 2$
4. State Thevenin Theorem and draw its equivalent circuit. $\quad \mathbf{2} \quad \mathbf{1}$
5. Outline the assumptions considered for an ideal transformer. $\quad \mathbf{3} \quad \mathbf{2}$
6. Justify why the induced emf in a dc motor is called back or counter emf. $\quad \mathbf{3} \quad \mathbf{3}$
7. How will you find the speed of an ac machine with given frequency and poles. Justify it? $\mathbf{4} \quad \mathbf{2}$
8. Why Single Phase Induction Motor is not Self Starting? 4
9. Distinguish MCB and MCCB $\quad \mathbf{5}$
10. Sketch the circuit diagram of buck converter and boost converter.

Calculate the value of current i flowing in the circuit shown.

(OR)

Calculate the nodal voltages in the circuit shown.

Using superposition theorem, calculate v_{o} in the circuit shown.
(OR)

Find the Thevenin equivalent circuit across $a-b$ and find the current through the load resistor $\mathrm{R}_{\mathrm{L}}=16 \Omega$.

A single phase $50-\mathrm{Hz}$ transformer has 20 primary turns and 200 (14) 3 3 secondary turns. If the primary winding is connected to a 230 V supply, calculate (i) The value of maximum core flux (ii) The voltage induced in the secondary winding (iii) the primary current when the secondary current is 13 A .

(OR)

(b) Derive the equation relating back-emf and speed of dc motor and

(14) 3
discuss the speed control method used separately excited dc motor.
14. (a) (i) Draw a typical torque-slip characteristics curve of 3-phase induction
(8) 43 motor and deduce the condition for maximum torque.
(ii) Show that the three-phase currents flowing in three phase windings generate a rotating magnetic field

(OR)

(b) (i) Explain construction and working principle of Synchronous Generator.
(ii) Discuss the various types of losses that can occur in an induction motor. Identify the loss that impact motor efficiency.

Draw the circuit diagram of a buck boost converter and explain its operation with equivalent circuit for different modes and waveforms
(OR)
(b) Briefly explain the components of LT Switchgear and its types.

$\underline{\text { PART- C }(1 \times 10=10 \mathrm{Marks})}$
 (Q.No. 16 is compulsory)

Marks CO RBT LEVEL

