

- Study resonance phenomenon in electrical circuits and understand the effect of magnetic coupling **CO3** between windings
- Perform transient analysis of electrical circuits and model circuits as 2 port networks **CO4**
- **CO5** Analyze three phase AC electrical circuits

TIME:3 HOURS

CO2

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT
1.	An Electric iron is rated 1000W, 230V. Find the current drawn and resistance of the	1	LEVEL 2
	heating element.		
2.	Distinguish between a Loop and Mesh in a circuit	1	2
3.	State maximum power transfer theorem	2	1
4.	State the steps to solve the super position theorem.	2	2
5.	Define Apparent power and Power factor.	3	1
6.	What is parallel resonance?	3	2
7.	Write down the time constants of R-L and R-C circuit.	4	1
8.	When is a two port network is said to be reciprocal?	4	2
9.	Distinguish between unbalanced supply and unbalanced load.	5	2
10.	If active power of 3 phase motor is 5600W and Power factor is 0.81 Find its reactive	5	3
	power.		

PART- B(5x 14=70Marks)

Determine the total current flowing through figure 1.

Figure 1.

(**OR**)

(b)

Determine the current I_2 of the given Figure 2 using mesh analysis (14) 3 1 technique. Also, apply nodal analysis method to verify the current I₂ value.

Figure 2.

What are the limitations of superposition 12. (a) example state and prove the superpositio (OR Determine the Thevenin's equivalent acr **(b)**

circuit shown in figure 3.

Q.CODE: 225759

	Marks	СО	RBT
			LEVEL
the circuit as shown in	(14)	1	3

theorem? With suitable circuit	(14)	2	4
on theorem.			
R)			
ross the terminal A and B of the	(14)	2	4

3

3

Figure 3.

Determine the value of R_L of a network comprising $(R_L + j20) \Omega$ and (14)

13. (a)

- (Q.No.16 is compulsory)
- A 3 phase, 400V supply is given to a delta c 16. $10\angle 30\Omega$, $10\angle 45\Omega$ and $2.5\angle 60\Omega$ respectively currents and draw the phasor diagram.

	(20 - j10) Ω connected in parallel operated at resonance condition.			
	(OR)			
(b)	Derive the expression for the equivalent inductance of (i) series opposing and (ii) series aiding circuits.	(14)	3	3
14. (a)	Derive the DC response of RL and RC series circuits. Compare their performances.	(14)	4	3
	(OR)			
(b)	A series RLC circuit with R=20 Ω , L=0.05 H and C=20 μ F is excited	(14)	4	3
	from a voltage source of V=100 V. Obtain the equation for current in			
	the circuit.			
15. (a)	A 3-phase 4-wire 400 V supply is given to balanced star connected load	(14)	5	4
	of impedance (8+6j) Ω in each branch. Determine line current, power			
	factor and total power.			
	(OR)			
(b)	Show that three phase power can be measured by two watt meters.	(14)	5	4

Draw the phasor diagrams. Derive an expression for power factor in terms of wattmeter readings.

Q.CODE: 225759

PART- C(1x 10=10Marks)

	Marks	CO	RBT
			LEVEL
connected load of impedances y in each branch. Find the line	(10)	5	4