Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023
 Third Semester
 EE18301 - ELECTRON DEVICES AND CIRCUITS
 Electrical and Electronics Engineering
 (Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

CO 1 Describe and analyse different types of PN devices.
CO 2 Describe and analyse different types of current and Voltage controlled devices
CO 3 Analyse performance of devices using small signal model
CO 4 Design and implementation of various electronic devices in circuits
PART- A (10 x $2=20$ Marks $)$
(Answer all Questions)

1. Define dynamic resistance.

CO | RBT |
| :---: |
| LEVEL |

2. A half-wave rectifier has its peak value (Vm) as 10 V . Calculate the average and RMS 13 values of current.
3. What are the consequences of early effect in transistor?
4. Consider the single stage $C E$ amplifier with $R_{s}=1 \mathrm{~K} \Omega$ and $R_{L}=1.2 \mathrm{~K} \Omega$. Calculate the $\mathbf{3} \mathbf{3}$ current gain if $\mathrm{h}_{\mathrm{fe}}=50$ and $\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$.
5. Compare BJT and FET.
6. Draw the small signal model of common source amplifier.
7. Why neutralization used in tuned amplifiers?
8. A voltage series feedback amplifier has a voltage gain with feedback as 83.33 and feedback ratio as 0.01 . Calculate the voltage gain of the amplifier without feedback.
9. List the applications of opto-coupler. $\quad \mathbf{1} \quad \mathbf{2}$
10. Why silicon is not a preferable LED material?

PART- B (5 x $14=70$ Marks)

11. (a) (i) Explain the Volt ampere characteristics of pn junction diode in forward

Marks	CO	RBT LEVEL
(7)	$\mathbf{1}$	$\mathbf{3}$

(ii) Draw the circuit diagram of half wave rectifier for producing a positive
(7) 13 output voltage .Explain the circuit operation and sketch the waveforms.
(b) (i) Briefly discuss about the capacitance effect of pn junction under reverse bias condition.
(ii) Explain the operation of Zener diode as voltage regulator.
12. (a) Explain the operation of NPN transistor in CE configuration with its input and output characteristics. Also define active, saturation and cutoff regions.
(OR)
(b) Explain the need for biasing and different biasing methods of BJT.
13. (a) Analyze the performance of common drain MOSFET amplifier and derive its input impedance, output impedance and voltage gain.
(OR)
(b) For a CS amplifier, draw the small signal equivalent circuit and determine the expression for voltage gain, input impedance and output impedance.
14. (a) Analyze the operation of differential amplifier for common mode and differential mode inputs and derive its CMRR.
(OR)
(b) Draw the circuit for voltage series feedback and derive the expression for input impedance, output impedance and voltage gain.
15. (a) Discuss the principle and operation of a Colpitts oscillator with a circuit. Also deduce an expression for frequency of oscillations.
(OR)
(b) With neat diagram explain the Wien bridge oscillator and derive an expression for frequency of oscillations.

PART- C ($1 \times 10=10$ Marks $)$
(Q.No. 16 is compulsory)
16. The device parameters for an n-Channel JFET are: Maximum current $\mathrm{I}_{\mathrm{DSS}}=$

Marks CO | RBT |
| :---: |
| |
| |
| LEVEL |

(10) 24 10 mA , Pinch off voltage, $\mathrm{V}_{\mathrm{P}}=-4 \mathrm{~V}$. Calculate the drain current for (a) $\mathrm{V}_{\mathrm{GS}}=0$, (b) $\mathrm{V}_{\mathrm{GS}}=-1.0 \mathrm{~V} \operatorname{and}(\mathrm{c}) \mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}$.

