Reg. No.

PART- B (5x 14=70Marks)

(Restrict to a maximum of TWO subdivisions)

11(a) An infinite line charge with uniform charge density ρ_{L} extending along the z-axis. Find the electric field at an arbitrary point $P(x, y, z)$, at a distance of ρ from the z -axis.

(OR)

11(b) If $\vec{A}=\rho \cos \phi \overrightarrow{a_{\rho}}+\sin \phi \overrightarrow{a_{\phi}}$ evaluate $\oint A . d l$ around the path shown in the figure below. Confirm this by using Stoke's theorem.

12(a) (i) Derive an expression for the capacitance of concentric spheres with inner radius ' a ' and outer radius ' b '.
(ii) Derive the expression for Laplace's and Poisson's equations.

(OR)

12(b) Consider the interface separating dielectric $1\left(\varepsilon_{r 1}\right)$ and dielectric $2\left(\varepsilon_{r 2}\right)$, and derive the relationships of the tangential components and normal components of Electric field intensity and electric flux density across the interface. Show that the angles between the normal to the boundary and the permittivity on either side of the boundary satisfy the following relation

$$
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\varepsilon_{1}}{\varepsilon_{2}}
$$

13(a) Derive an expression for the magnetic field intensity at point ' P ' in a (14) 3 medium of Permeability ' μ ' due to an infinitely long current-carrying conductor at a distance ' r ' meters from the point.

(OR)

13(b) State and explain Ampere's circuital law and show that the field strength (14) 3 at the end of a long solenoid is one-half of that at the center

14(a) Derive and explain Maxwell's equations both in integral and point forms
(8) 23
(6) 23
(14) 23

14(b) (i) Derive the expression for transformer and motional EMF.
(ii) Compare the relation between circuit theory and field theory.

15(a) Derive wave equations in phasor form and thereby determine the following, (i) propagation constant, ii) attenuation constant, iii) phase constant, iv) Intrinsic impedance, and v) wavelength.
(OR)
15(b) State and prove Poynting's theorem and derive the expression for average power.

PART-C ($1 \times 10=10 \mathrm{Marks}$)

(Q.No. 16 is compulsory)

16 Consider a sphere of radius ' a ' with uniform charge $\rho_{0} \mathrm{C} / \mathrm{m}^{3}$. Determine Electric flux density inside and outside of the sphere using Gauss's law. Plot the variation of \vec{D} against the distance r from the centre of the conductor.
(7) 43
(7) 43
(14) 54
(14) 54

LEVEL

