Q. Code: 345818													
Reg. No.													
B.E / B.TECH. DEGREE EXAMINATION, MAY 2023													
Third Semester													
EE18303 – ELEC	CTR	ICA	LI	MA	CH	IN	ES-	I					

(Electrical and Electronics Engineering)

(Regulation 2018/Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

- **CO1** Analyze a magnetic circuit and determine the performance parameters.
- **CO2** Compute the performance parameters of a transformer and understand the function of the various special transformers.
- **CO3** Derive the force and torque of an electro-mechanical conversion device and analyze the performance.
- CO4 Derive the characteristics and estimate the performance of DC generators.
- **CO5** Understand the necessity of Starting, controlling, braking, and the performance of different types of DC motors.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	What is dynamically induced emf?	1	1
2.	Compare electric and magnetic circuits.	1	2
3.	Why the transformers are rated in kVA?	2	2
4.	List the properties of an ideal transformer.	2	2
5.	Define energy and co-energy.	3	1
6.	Give an example for each of single and multiple excited system.	3	2
7.	State the conditions during which a DC shunt generator fails to excite.	4	3
8.	Specify the role of compensating winding in DC machine.	4	2
9.	Why DC series motor is always started with load?	5	1
10.	What is the significance of back emf in DC motor?	5	2

PART- B (5x 14=70Marks)

11. (a)	Exp	lain the two different types of magnetic circuits with neat diagram.	Marks (14)	со 1	rbt level 2
		(OR)			
(b)	Elał dens	porate about the AC operation of magnetic circuit and derive the energy sity expression.	(14)	1	2
12. (a)	(i)	Analyze the operation of a transformer with necessary vector diagram for leading power factor load.	(7)	2	3
	(ii)	Derive the condition for maximum efficiency in a transformer.	(7)	2	3
		(OR)			
(b)	(i)	Obtain the expression for copper saving when a single winding transformer is used.	(7)	2	3

			Q. Code: 3458			
	(ii)	A 200 kVA, single phase transformer has an efficiency of 98% at full load 0.8 p.f.lag. If the maximum efficiency occurs at three quarters full load, calculate the iron loss and full load copper loss.	(7)	2	3	
13. (a)	Der rela	ive the expression for magnetic force developed in an electromagnetic y of a single excited system.	(14)	3	3	
		(OR)				
(b)	Der mor	ive the expression for force developed in a magnetic system excited by e than one source.	(14)	3	3	
14. (a)	(i)	Derive the emf equation of a DC generator.	(7)	4	4	
	(ii)	A 10 pole DC shunt generator with 800 wave connected conductors are running at 600 rpm supplies a load of 15 Ω resistance at a terminal voltage of 240V. The armature resistance is 0.28 Ω and field resistance is 240 Ω . Determine the armature current, the induced emf and flux per pole.	(7)	4	4	
		(OR)				
(b)	Illus dem	strate the effect of armature reaction in a DC generator. How is its agnetizing and cross magnetizing ampere turns calculated?	(14)	4	4	
15. (a)	(i)	Briefly explain the different methods of excitation of a DC motor with suitable diagrams.	(10)	5	3	
	(ii)	A pole DC motor takes a 50 A armature current. The armature has lap connected 480 conductors. The flux per pole is 20mWb. Calculate the gross torque developed by the armature of the motor.	(4)	5	4	
(b)	(i)	Draw the diagram of a 3 point starter and explain its principle of operation	(7)	5	3	
	(ii)	A 500 V, DC shunt motor takes a total current of 5 A when running unloaded. The resistance of armature circuit is 0.25 Ω and the field resistance is 125 Ω . Calculate the efficiency and output when the motor is loaded and draws a current of 100 A.	(7)	5	4	
		PART- C (1x 10=10Marks) (Q.No.16 is compulsory)				
			Marks	СО	RBT LEVEL	
16.	Obta whic	in the equivalent circuit of a single phase 1100/220 V transformer on h the following results were obtained.	(10)	2	4	
	1)	1100 V, 0.5 A, 55 W on primary, secondary being open circuited				

ii) 10 V, 80 A, 400 W on L.V. side, H.V. being short circuited.

Calculate the voltage regulation for the above transformer when supplying 100 A at 0.8 p.f. lagging.