Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Fourth Semester

EE18402 – DIGITAL LOGIC CIRCUITS

(Electrical and Electronics Engineering) (Regulation 2018/ Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

- **CO1** Understand various aspects of Boolean algebra.
- **CO2** Design and evaluation of combinational logic circuits.
- **CO3** Design and evaluation of sequential logic circuits.
- **CO4** Design and analysis of asynchronous sequential logic circuits through VHDL.
- **CO5** Comprehend the operation and characteristics of memory devices and digital logic families.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Realize AND gate using NOR-NOR Logic.	1	3
2.	Convert (375.46) ₈ to hexadecimal value.	1	3
3.	Express the function $Y=A+B'C$ in canonical POS form.	2	3
4.	Draw the block diagram and truth table for 2 to 4 decoder.	2	2
5.	Differentiate combinational and sequential circuits based on memory.	3	2
6.	Give the characteristic equation and truth table of T flip-flop.	3	2
7.	What is meant by race condition in asynchronous sequential circuits and mention its	4	2
	types?		
8.	Write the VHDL program for NOT gate using dataflow modeling.	4	2
9.	Mention the important characteristics of ICs.	5	1
10.	How the memories are classified?	5	2

PART- B (5x 14=70Marks)

		Marks	CO	RBT LEVEL
11. (a)	Plot the logical expression ABCD + AB'C'D' + AB'C + AB on a 4-	(14)	1	3
	variable K-map; obtain the simplified expression from the map. Also			
	realize the same using NAND logic.			

(**OR**)

(b)	(i)	Explain in detail about the binary codes.	(8)	1	2
	(ii)	Apply Boolean laws to reduce the Boolean expression.	(6)	1	3
		(A+C)(AD+AD')+AC+C			

12. (a)	Design and implement a gray to binary code converter. (OR)	(14)	2	3
(b)	(i) Implement a full adder with two 4 x 1 multiplexers.	(7)	2	3
(0)	(ii) Design a binary to octal decoder circuit and explain its working with	(7)	2	3
	truth table.	(')	-	C
13. (a)	(i) A sequential circuit with two D flip flops A and B; inputs X and Y;	(8)	3	3
	output Z is specified by the following next state and output equations			
	$A^+=X'Y+XA$ (a) Draw the logic diagram of the circuit (3)			
	$B^+=X'B+XA$ (b) Derive the state table (3)			
	Z=B (c) Derive the state diagram (2)			
	(ii) Design a synchronous MOD 5 counter using T flip flops.	(6)	3	3
	(OR)			
(b)	Explain in detail about any two types of shift registers with neat output waveforms.	(14)	3	3
14. (a)	Design an asynchronous circuit that has two inputs X_1 and X_2 and one output Z. The circuit is required to give an output whenever the input sequence (0,0) (0,1) and (1,1) received but only in that order. Design it using T flip-flop.	(14)	4	3
	(OR)			
(b)	(i) Write the VHDL code for JK flip-flop using behavioral modeling.	(7)	4	2
	(ii) Construct a hazard-free logic circuit for a boolean function	(7)	4	3
	$f(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 10, 12).$			
15. (a)	Implement the following function using PLA.	(14)	5	3
	$F1 = \sum m (0, 1, 2, 3, 4, 7, 8, 11, 12, 15)$	()		
	$F2=\sum m(2,3,6,7,8,9,12,13)$			
	$F3=\sum m(1,3,7,8,11,12,15)$			
	$F4=\sum m (0,1,4,8,11,12,15)$			
	(OR)			
(b)	Draw and explain the implementation of the universal gates using CMOS.	(14)	5	3
	PART- C (1x 10=10Marks) (Q.No.16 is compulsory)			
		Marks	со	RBT LEVEL
16.	Design a three bit ripple up counter using JK flip-flops with timing diagram for each flip flop output.	(10)	3	3
