Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023
 Fourth Semester
 EE18402 - DIGITAL LOGIC CIRCUITS
 (Electrical and Electronics Engineering)
 (Regulation 2018/ Regulation 2018A)

TIME: 3 HOURS
MAX. MARKS: 100
CO1 Understand various aspects of Boolean algebra.
CO2 Design and evaluation of combinational logic circuits.
CO3 Design and evaluation of sequential logic circuits.
CO4 Design and analysis of asynchronous sequential logic circuits through VHDL.
CO5 Comprehend the operation and characteristics of memory devices and digital logic families.

PART- A (10x2=20Marks)
 (Answer all Questions)

1. Realize AND gate using NOR-NOR Logic.
2. Convert (375.46) 8 to hexadecimal value.
3. Express the function $\mathrm{Y}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in canonical POS form.
4. Draw the block diagram and truth table for 2 to 4 decoder.
5. Differentiate combinational and sequential circuits based on memory.

CO	RBT
LEVEL	
1	3

6. Give the characteristic equation and truth table of T flip-flop.
7. What is meant by race condition in asynchronous sequential circuits and mention its types?
8. Write the VHDL program for NOT gate using dataflow modeling.
9. Mention the important characteristics of ICs.
10. How the memories are classified?

PART- B (5x 14=70Marks)

11. (a) Plot the logical expression $\mathrm{ABCD}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{AB}$ on a 4 -

Marks	CO	RBT
LEVEL		
(14)	1	3

(OR)
(b) (i) Explain in detail about the binary codes.
(8) $1 \quad 2$
(ii) Apply Boolean laws to reduce the Boolean expression.
(6) 1
$(\mathrm{A}+\mathrm{C})\left(\mathrm{AD}+\mathrm{AD}^{\prime}\right)+\mathrm{AC}+\mathrm{C}$
12. (a) Design and implement a gray to binary code converter.
(OR)
(b) (i) Implement a full adder with two 4×1 multiplexers.
(ii) Design a binary to octal decoder circuit and explain its working with truth table.
13. (a) (i) A sequential circuit with two D flip flops A and B; inputs X and Y; output Z is specified by the following next state and output equations
$\mathrm{A}^{+}=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{XA}$
(a) Draw the logic diagram of the circuit (3)
$\mathrm{B}^{+}=\mathrm{X}^{\prime} \mathrm{B}+\mathrm{XA}$
(b) Derive the state table
$Z=B$
(c) Derive the state diagram
(8) 3
$\begin{array}{lll}\text { (7) } & 2 & 3 \\ \text { (7) } & 2 & 3\end{array}$
(7) 23

(ii) Design a synchronous MOD 5 counter using T flip flops.
(6) 3 (OR)
(b) Explain in detail about any two types of shift registers with neat output waveforms.
14. (a) Design an asynchronous circuit that has two inputs X_{1} and X_{2} and one output Z. The circuit is required to give an output whenever the input sequence $(0,0)(0,1)$ and $(1,1)$ received but only in that order. Design it using T flip-flop.

(OR)

(b) (i) Write the VHDL code for JK flip-flop using behavioral modeling.

(7)	4	2
(7)	4	3

(ii) Construct a hazard-free logic circuit for a boolean function $f(A, B, C, D)=\sum m(0,2,6,7,8,10,12)$.
15. (a) Implement the following function using PLA.

$$
\begin{aligned}
& \mathrm{F} 1=\sum \mathrm{m}(0,1,2,3,4,7,8,11,12,15) \\
& \mathrm{F} 2=\sum \mathrm{m}(2,3,6,7,8,9,12,13) \\
& \mathrm{F} 3=\sum \mathrm{m}(1,3,7,8,11,12,15) \\
& \mathrm{F} 4=\sum \mathrm{m}(0,1,4,8,11,12,15)
\end{aligned}
$$

(OR)
(b) Draw and explain the implementation of the universal gates using CMOS.
(14) 5

PART- C (1x 10=10Marks)

(Q.No. 16 is compulsory)
16. Design a three bit ripple up counter using JK flip-flops with timing diagram

Marks	CO	RBT
LEVEL		
(10)	3	3

