

B. E / B. TECH.DEGREE EXAMINATION, MAY 2023

Fifth Semester

EE18501 – POWER SYSTEM ANALYSIS

(Electrical and Electronics Engineering)

(Regulation 2018)

TIME:3 HOURS

MAX. MARKS: 100

- Develop the equivalent model of power system and construct the admittance and impedance **CO1** matrices.
- CO2 Formulate the steady-state power flow problem and apply numerical solution algorithms for analysis.
- CO3 Compute short circuit capacity (SCC) of power system using matrix building algorithm under balanced fault.
- **CO4** Compute short circuit capacity (SCC) of power system using symmetrical components under various faults.
- Formulate power system stability problem under large disturbance and apply numerical solution **CO5** algorithms for analysis.

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Represent a transformer with off nominal tap ratio into its π -model equivalent circuit.	1	3
2.	Write the expression to determine new elements of Y-bus matrix after eliminating n th	1	3
	node using Kron's reduction technique.		
3.	Why one of the buses is taken as slack bus in power system?	2	2
4.	What is the best value of acceleration factor in Gauss-Seidel load flow solution method?	2	2
	Why is it necessary?		
5.	The positive sequence impedance of a 2-bus system is $j \begin{bmatrix} 0.15 & 0.20 \\ 0.10 & 0.30 \end{bmatrix} p.u$. Find the	3	3
	fault current when symmetrical fault occurs at bus 2.		
6.	Synchronous impedance is more than transient reactance – Justify.	3	4
7.	If the phase currents are $I_a = 2 + j3$, $I_b = 0$ and $I_c = -3 + j4$ Amp in a 3-phase, 4-	4	3
	wire system. Determine the current through the neutral.		
8.	Why the neutral grounding impedance Z_n appears as $3Z_n$ in the zero sequence network?	4	4
9.	What is small signal stability and how it is analyzed?	5	4
10.	Write the expression for stiffness coefficient of synchronous machine.	5	4

PART- B (5x 14=70Marks)

Draw the reactance diagram for the power system shown in Figure 1. 11. (a) Neglect resistance and use a base of 100 MVA, 220 kV in 50 Ω line. The ratings of the generator, motor and transformer are given below. Generator: 40 MVA, 25 kV, X[°]=20%

(**OR**)

Form Y-bus by singular transformation for the network shown in Figure 2. (14) **(b)** The impedance data is given in Table 1. Take (1) as reference node.

Table 1					
Element No	Self				
Element NO.	Bus code	Impedance			
1	1 - 2(1)	0.6			
2	1-3	0.5			
3	3-4	0.5			
4	1 – 2 (2)	0.4			
5	2-4	0.2			

Figure 2

12. (a) Using Gauss-Seidal method, determine bus voltages for the power system (14) shown in Figure 3. Take a base of 100 MVA and α =1.1.

CO

RBT

Marks

LEVEL (14) 1 3

3 1

2 3

Q. Code: 379364

3

Figure 3

(OR)

- (b) Explain the step by step computational procedure for the Newton-Raphson (14) 2 3 method of load flow studies.
- 13. (a) A 3-phase 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to (14) 3 a feeder of impedance (0.12+j0.48) Ω/phase/km through a step up transformer. The transformer is rated at 3 MVA, 6.6 kV/33 kV and has a reactance of 5%. Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3-phase symmetrical fault occurs at a point 15 km along the feeder.

(**OR**)

- (b) Explain the procedure for making short circuit studies of a large power (14) 3 3 system network using digital computers.
- 14. (a) Determine the fault current and fault MVA for the L-G fault occurs at bus 3 (14) 4 4 for the power system shown in Figure 4.

Figure 4

G₁, G₂: 100 MVA; 20 kV; X_d ^{"=}X₁=X₂=20%; X₀=4% T₁, T₂: 100 MVA; 20/345 kV (Y=Y=) X=8% Transmission line: X₁=X₂=15%; X₀=50%

(OR)

- (b) Derive the expression for fault current in Double line-to-ground fault on an (14) 4 4 unloaded generator in terms of symmetrical components.
- 15. (a) (i) Derive the expression for swing equation.(10) 5 3(ii) Enumerate the expressions for critical clearing angle and time.(4) 5 3(OR)
 - (b) With a neat flow chart explain the steps involved in Runge-Kutta method to (14) 5 3 determine stability.

PART- C(1x 10=10Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

4

16. The currents flowing in the lines toward a balanced load connected in Δ are (10) 4 $I_a=10 \ \angle 0^0$, $I_b=141.4 \angle 225^0$ and $I_c=100 \angle 90^0$. Find the symmetrical components of the given line currents and draw phasor diagrams of the positive and negative sequence currents.

Q. Code:379364