Reg. No.

B.E. DEGREE EXAMINATION, MAY 2023

Fifth Semester

EE18505 – DIGITAL SIGNAL PROCESSING

(Electrical and Electronics Engineering)

(Regulations 2018)

TIME: 3 HOURS

MAX. MARKS: 100

- Understand the fundamental aspects of digital signal processing. **CO**1
- Acquire knowledge on various discrete-time signals and systems. **CO 2**
- **CO 3** Analyze domain specific discrete time systems and evaluate frequency response and stability analysis.
- **CO 4** Design and realize FIR and IIR filters.
- Apply the knowledge on the basic architectures of commercial digital signal processors to CO 5 electrical and electronics engineering.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define Nyquist rate.	1	1
2.	Find the mathematical representation for $x(n) = \{1, 2, 4, 1\}$.	1	2
3.	Determine the ROC and Z transform of $x (n) = u (-n-1)$.	2	2
4.	State the conditions for a system to be stable with respect to the Z plane.	2	1
5.	What is zero padding in DFT?	3	2
6.	Determine the computational complexity in 32 point DFT and 32 point DIT-FFT.	3	2
7.	What is the need for windowing?	4	2
8.	Define frequency warping.	4	1
9.	List the different buses in the TMS320C54 processor.	5	2
10.	What are the various registers in the TMS320C54 processor?	5	1

PART- B (5 x 14 = 70 Marks)

		Marks	СО	RBT LEVEL
11. (a)	Find if the following systems are Linear, Time varying, Causal and Stable or	(14)	1	4
	not. (i) $y(n) = x(n)\cos[x(n)]$ and (ii) $y(n) = x(n) - x(n-1)$.			

(**OR**)

(b) Discuss the classification of various discrete-time systems in detail with an (14) 1 4 example for each.

12. (a)	Given x (n) = $\{1, -2, 1\}$ and h (n) = $\{1, 1, 1\}$. Determine the output, y (n) using (i) linear convolution and (ii) Z-transform.	(14)	2	3
	(OR)			
(b)	Determine the inverse Z transform of X (z) = $Z [Z^2-4Z+5] / [(Z-1) (Z-2) (Z-3)]$	(14)	2	3
	for ROC: (i) $ z > 3$; (ii) $2 < z < 3$; (iii) $ z < 1$			
13. (a)	Find the output of the sequence $x(n) = \{0, 1, 2, 3, 4, 3, 2, 1\}$ using (i) DFT and (ii) DIT-FFT.	(14)	3	3
	(OR)			
(b)	Obtain the 8-point DIT-FFT flow graph using derivations.	(14)	3	3
14. (a)	Analyze the design procedure for Butterworth filters.	(14)	4	4
	(OR)			
(b)	Design a digital Chebyshev filter to meet the following constraints by using	(14)	4	4
	impulse invariant transformation.			
	$0.8 \le \left H\left(e^{j\omega}\right) \right \le 1 \qquad 0 \le \omega \le 0.2\pi$			
	$\left \mathrm{H}\left(\mathrm{e}^{\mathrm{j}\omega} \right) \right \le 0.2 0.6\pi \le \omega \le \pi$			
15. (a)	Discuss the instruction set and addressing modes in TMS320C54 processor.	(14)	5	2

- (OR)
- (b) Draw the internal architecture of the processor TMS320C54 and explain the (14) 5 2 various blocks.

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

 $\begin{array}{c} \text{Marks} \quad \text{CO} \quad \begin{array}{c} \text{RBT} \\ \text{LEVEL} \end{array}$ 16. Evaluate the circular convolution of the given signals, x_1 (n) = {1, 2, 3, 1} (10) 2 5 and $x_2(n) = \{4, 3, 2, 2\}. \end{array}$
