Reg. No.

B.E. DEGREE EXAMINATION, MAY 2023
 Fifth Semester
 EE18505 - DIGITAL SIGNAL PROCESSING
 (Electrical and Electronics Engineering)

(Regulations 2018)

TIME: 3 HOURS

MAX. MARKS: 100
CO 1 Understand the fundamental aspects of digital signal processing.
CO2 Acquire knowledge on various discrete-time signals and systems.
CO 3 Analyze domain specific discrete time systems and evaluate frequency response and stability analysis.
CO 4 Design and realize FIR and IIR filters.
CO5 Apply the knowledge on the basic architectures of commercial digital signal processors to electrical and electronics engineering.

PART- A (10 x $2=20$ Marks $)$
(Answer all Questions)

1. Define Nyquist rate.
2. Find the mathematical representation for $x(n)=\{1,2,4,1\}$.
3. Determine the ROC and Z transform of $x(n)=u(-n-1)$.
4. State the conditions for a system to be stable with respect to the Z plane.
5. What is zero padding in DFT?

6. Determine the computational complexity in 32 point DFT and 32 point DIT-FFT.
7. What is the need for windowing?3
8. Define frequency warping.
9. List the different buses in the TMS320C54 processor.
10. What are the various registers in the TMS320C54 processor?

PART- B (5 x $14=70$ Marks)
11. (a) Find if the following systems are Linear, Time varying, Causal and Stable or

Marks	CO	RBT
LEVEL		
(14)	1	4

(OR)
(b) Discuss the classification of various discrete-time systems in detail with an
(14)

1
4 example for each.
12. (a) Given $x(n)=\{1,-2,1\}$ and $h(n)=\{1,1,1\}$. Determine the output, $\mathrm{y}(\mathrm{n})$ using (i) linear convolution and (ii) Z-transform.
(OR)
(b) Determine the inverse Z transform of $\mathrm{X}(\mathrm{z})=\mathrm{Z}\left[\mathrm{Z}^{2}-4 \mathrm{Z}+5\right] /[(\mathrm{Z}-1)(\mathrm{Z}-2)(\mathrm{Z}-3)]$
(14) 23 for ROC: (i) $|z|>3$; (ii) $2<|z|<3$; (iii) $|z|<1$
13. (a) Find the output of the sequence $x(n)=\{0,1,2,3,4,3,2,1\}$ using (i) DFT
(14) 3 and (ii) DIT-FFT.

(OR)

(b) Obtain the 8-point DIT-FFT flow graph using derivations.
14. (a) Analyze the design procedure for Butterworth filters.
(14) 3
(OR)
(b) Design a digital Chebyshev filter to meet the following constraints by using
(14) 4 impulse invariant transformation.

$$
\begin{array}{r}
0.8 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 1 \quad 0 \leq \omega \leq 0.2 \pi \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 0.2 \quad 0.6 \pi \leq \omega \leq \pi
\end{array}
$$

15. (a) Discuss the instruction set and addressing modes in TMS320C54 processor.
(14) 5 (OR)
(b) Draw the internal architecture of the processor TMS320C54 and explain the
(14) 5 5 various blocks.

PART- C ($1 \times 10=10$ Marks)

(Q.No. 16 is compulsory)
16. Evaluate the circular convolution of the given signals, $\mathrm{x}_{1}(\mathrm{n})=\{1,2,3,1\}$
 and $\mathrm{x}_{2}(\mathrm{n})=\{4,3,2,2\}$.

