Q. Code:609740

			· · ·	
Reg. No.				
B.E / B.TECH. DEGREE EXAMINATION Sixth Semester	N, MAY 2	2023		
EE18601 – POWER SYSTEM OPERATION A	AND CO	NTROL		
Electrical and Electronics Engineerin	ng			
(Regulation 2018) TIME: 3 HOURS		MAX. MA	ARKS	100
CO 1 Apply the load forecasting techniques and identify suitable pow	wer controls			
levelsCO 2Model load frequency dynamics and analyze real power - frequ	iency contr	ol		
CO 3 Model voltage dynamics and analyze reactive power - voltage		01		
CO 4 Formulate and solve unit commitment and economic dispatch p				
CO 5 Ascertain the structure and functionalities of Energy Managem	ent System	l		
PART- A (10 x $2 = 20$ Marks)				
(Answer all Questions)			CO	RBT
				LEVEL
Why it is desirable to have high load factor?			1	2
2. State the purpose of load forecasting technique in the power system.			1	2
3. How is automatic load frequency control implemented in the pow	-		2	2
4. List the assumptions made in the dynamic response of uncontrolle	ed case.		2	2
5. Compare P-F and Q-V control methods.			3	2
6. Enumerate various methods of voltage control in the transmission	•		3	2
7. Why does the incremental cost criterion include the transmission	losses?		4	2
8. Distinguish economic dispatch and unit commitment.			4	2
9. Write the significant role SCADA plays in the electrical power sy	stems.		5	2
10. Identify the responsibilities of regional load dispatch centre.			5	2
PART- B (5 x 14 = 70 Marks)				
	0.1	Marks		RBT LEVEL
 11. (a) (i) Analyze the structure and capability of the Indian Power (ii) A generating station has a maximum demand of 30 MW of 60%, a plant capacity factor of 50% and a plant use Find the 	/, a load fac		1 1	3 3
(i) reserve capacity of the plant				
(ii) daily energy produced and				
(iii) maximum energy that could be produced dat running were fully loaded.	ily, if the p	lant		
(OR)				
1				

- (b) (i) What are the techniques used to predic Explain the method of least squares fit lo
 - (ii) Discuss plant level controls applied in th
- Derive the transfer function of the speed gov 12. (a) with an aid of a block diagram.

(OR

- For an isolated single area, consider the foll **(b)** Area capacity = 1000 MW Normal operating load = 500 MWInertia constant = 5 secSpeed Operati The loa Find th order ti in frequ
- 13. (a) Develo
 - What a **(b)** discuss
- 14. (a) Three p to supp if the generat

Regulation $R = 5 \%$				
ting frequency $f_0 = 50 \text{ Hz}$				
oad decreases by 1 percent fo	r a decrease in frequency by 1 percent.			
he gain and time constants of	the power system represented by a first			
	controlled area, then find out the change			
quency due to an increase of lo	ad by 75 MW.			
op a typical excitation system	and derive the transfer function models.	(14)	3	3
	(OR)		_	_
• •	C? With the help of V-I characteristics	(14)	3	3
ss the voltage control by SVC.				
nower plants of a total capacity	y of 500 MW are scheduled for operation	(14)	4	3
	MW. Find the optimum load scheduling	(14)	-	5
	ncremental cost characteristics and the			
ator constraints:	ieremental cost characteristics and the			
$IC_1 = 40 + 0.25 P_{G1}$,	$30 < P_{cl} < 150$			
$IC_1 = 40 + 0.20 IG_1$, $IC_2 = 50 + 0.30 P_{G2}$,				
$IC_2 = 30 + 0.30 IG_2$, $IC_3 = 20 + 0.20 P_{G3}$,				
105 20 0.201 (5,	(OR)			
op the forward dynamic p	rogramming solution method of unit	(14)	4	3
nitment problem with a neat flo				
1				
orize the various functions of l	EMS and analyze the role of EMS in the	(14)	5	3
tion and control of power syste	em.			
	(OR)			
Discuss major functions of pov	ver system security.	(4)	5	3
Enumerate the various operati	ng states and the control strategies of a	(10)	5	3

- (b) Develo commi
- Catego 15. (a) operati

- (i) D **(b)**
 - (ii) Enumerate the various operating states and the control strategies of a (10) power system.

Q. Code:609740

ct the load on power system?	(7)	1	3
oad forecasting. he operation of power system.	(7)	1	3
vernor mechanism from basics	(14)	2	3
R) wing data:	(14)	2	3

lowing data:	(14)	2

Q. Code:609740

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL
16.	A power station has to meet the following demand:	(10)	1	5
	Group A: 180 KW between 8 A.M. and 6 P.M.			
	Group B: 120 KW between 6 A.M. and 10 A.M.			
	Group C: 60 KW between 6 A.M. and 10 A.M.			
	Group D: 110 KW between 10 A.M. and 6 P.M. and then between			
	6 P.M. and 6 A.M.			
	Sketch the daily load curve and load duration curves, and determine (i) units			
	generated per day, (ii) load factor, and (iii) diversity factor.			

Q. Code:609740

Q. Code:609740