	Q. Code	e: 93	4527		
	Reg. No.				PART- B (5x 14
	B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023 Sixth Semester			11. (a)	The continuous duty rating of a motor is P. De factor can it be overloaded when it is subjected short time duty load?
	EE18602 – ELECTRICAL DRIVES (Electronics and Communication Engineering)				(OR)
TI CO CO CO CO CO	 (Regulation 2018) ME:3 HOURS MAX. MARK 1 Select the type and rating of motor for a known load characteristic. 2 Select, design, and analyze a converter for a DC drive. 3 Model DC and AC Electric Drives and design a controller. 4 Learn the distinctive features of traction schemes. 	XS: 1(00	(b)	A motor having a suitable control circuit relationship $T_M = a\omega + b$, where a and b are po- is used to drive a load whose torque is expressed d are positive constants. The total inertia of the r a) Determine the relations among the constants the motor can start together with the load and has speed.
CU	5 Choose and design a drive for industrial applications.				b) Calculate the equilibrium operating speed.c) Will the drive be stable at this speed?
	PART- A(10x2=20Marks) (Answer all Questions)				d) Determine the initial acceleration of the drivee) Determine the maximum acceleration of the or
		CO	RBT LEVEL	12. (a)	Elucidate the two quadrant operation of a s
1.	Examine the stability at the operating point B. $\omega_{\rm m} \uparrow r$	1	4	121 (u)	separately excited DC motor with neat wave torque characteristics using suitable expressions (OR)
	$0 \frac{T_{l}}{T_{l}}$			(b)	(i) A 230V, 960 rpm, 200A separately excite resistance of 0.02Ω . The motor is fed through a chopper. Assuming continuous of duty ratio of abaptar for motoring operation
2.	Summarize the factors to be considered for the selection of motor power rating for a specific application.	1	2		duty ratio of chopper for motoring operat rpm. (b) If maximum duty ratio of chop maximum permissible speed obtainable wi
3.	List the limitations of thyristor when it is preferred for chopper fed DC drives.	2	2		(ii) Interpret the multi-quadrant operation of a motor drive with mode diagrams.
4.	Compute the ON time of a DC chopper that operates on 220V DC and frequency of 500Hz, feeding an RL Load with output of 150V.	2	3	13. (a)	Derive the transfer function of DC motor with le
5.	Comment on the drawback of phase-controlled converter fed DC motor drives.	2	4		(OR)
6.	Depict the PLL circuit and justify how precise speed control is achieved in DC motor drives on implementation.	3	3	(b)	Design the speed controller with inner current c excited dc motor.
7.	Constant power mode of operation is called as field-weakening mode. Justify the statement with equation.	3	4	14. (a)	(i) Explicate the need for constant $\frac{V}{f}$ ratio in $\frac{V}{f}$
8.	Brief the vector decoupled control of Induction motor.	3	3		motor drives.(ii) Depict and explain the closed loop CSI fed
9.	A suburban train runs with an average speed of 36 km/h between two stations 2 km		3		(II) Depict and explain the closed loop oblice (OR)
	apart. Calculate the time in seconds.			(b)	Briefly discuss and analyse the Brush-less
10.	Identify the control strategy to limit the tact time in crane drives.	5	2	(-)	applications

со

1

1

RBT LEVEL

4

4

Marks

(5x 14=70Marks)

P. Derive the expression by what (14) bjected to an intermittent duty and

- ircuit develops a torque by the (14) are positive constants. This motor pressed as $T_L = c\omega^2 + d$, where c and of the rotating masses is J.
- onstants a, b, c and d in order that and have an equilibrium operating

drive. of the drive.

of a single phase converter fed wave forms and derive the speed ssions. (OR)	(14)	2	3
excited dc motor has an armature fed from a dc source of 230V uous conduction, (a) Calculate the operation at rated torque and 350 f chopper is limited to 0.95, find ble without field weakening.	(6)	2	3
n of a DC - DC separately excited	(8)	2	3
with load and converter system. (OR)	(14)	3	4
rent controller of a separately	(14)	3	4
tio in variable voltage induction	(8)	3	3
CSI fed induction motor drive.	(6)	3	3
less DC motor drive for servo	(14)	3	3

3

15. (a) Obtain the relationship between principal quantities involved in Traction (14) 4 Mechanics for Trapezoidal speed time curve, also find the schedule speed of an electric train for a run of 1.5 km if the ratio of its maximum to average speed is 1.25. It has a braking retardation of 3.6 km/h/s, acceleration of 1.8 km/h/s and stop time of 21 second.

(OR)

(b) A 350-tonne electric train runs up an ascending gradient of 1% with the (14) 4 3 following speed/time curves:
1. uniform acceleration of 1.6 km/h/s for 25 seconds
2. constant speed for 50 seconds
3. coasting for 30 seconds
4. braking at 2.56 km/h/s to rest.

Compute the specific energy consumption if train resistance is 50 N/t, effect of rotational inertia is 10%, and overall efficiency of transmission gear and motor is 75%.

16.

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

	Marks	CO	RBT
			LEVEL
Obtain the PLC based drive schematic of steel mills and discuss its control operation.	(10)	5	4

Q. Code: 934527

4