\square
B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023 Fourth Semester

IT18401 - PARADIGMS OF ALGORITHM DESIGN

(Information Technology)
 (Regulation 2018 / 2018A)

TIME: 3 HOURS

COURSE

CO 1 Develop simple and recursive algorithms to different problems
MAX. MARKS: 100
problems
CO 4 Explore NP Cons
5
CO 4 Explore NP Completeness problem
CO 5 Implement parallel architecture models and develop parallel algorithms to solve complex problems.

PART- A(10x2=20Marks)

(Answer all Questions)

1. How do you measure an algorithm's running time?

Prove that $2 n^{2}+3 n+1=O\left(n^{2}\right)$
3. Analyze the time complexity of Binary Search algorithm
4. Differentiate feasible solution and optimal solution.
5. State Hamiltonian Circuit problem.
6. Apply Graph coloring to color the graph with three colors Red, Blue and Green.
3

7. Identify the Vertex cover for the given graph
8. When is a problem said to be NP Hard?
9. Differentiate SIMD and MIMD Architecture.
$4 \quad 1$
2
10. What are the versions of the PRAM model for handling concurrent memory accesses? $\quad \mathbf{5} \quad \mathbf{1}$

PART- B (5x 14=70Marks)

(7) 14
ii) Analyze the time complexity of selection sort algorithm with an example.
12. (a) Apply merge sort algorithm to sort the given elements $14,20,78,98,20$, 45and derive it's time complexity.

(OR)

(b) Find all pair shortest path using Floyd's Algorithm and derive it's time (14) 23 complexity.

13. (a) Consider weights $w=\{5,6,10,11,16\}$ and $m=21$. Draw the state knapsack capacity $\mathrm{W}=5$ using dynamic programming

Items	Weight	Profit
1	2	12
2	1	10
3	3	20
4	2	15

14. (a) Examine the concepts of Polynomial, NP, NP Complete and NP-Hard (14) 4 problems. Illustrate polynomial time reducibility with example.
$\begin{array}{lllllll}\text { Develop an approximation algorithm to Travelling Salesperson } & \text { (14) } & \mathbf{4} & \mathbf{3}\end{array}$ problem with an example.
15. (a) Explain the different parallel architectures available with necessary
(14) 5
diagram.
(OR)
(b) Explain the CREW PRAM Computation model with an example.
(14) 5

2

PART- C(1x 10=10Marks)

(Q.No. 16 is compulsory)

Marks CO RBT (10) $3 \begin{array}{cc} & \text { LEVEL } \\ & 5\end{array}$
16. Determine the minimum spanning tree by applying Prim's Algorithm for the (10) 3 following graph and derive it's time complexity.

