Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Fourth Semester

IT18403 - OPERATING SYSTEM CONCEPTS

(Information Technology)
(Regulation 2018A)

TIME:3 HOURS

COURSE
outcomes
statement
MAX. MARKS: 100

CO 1 Interpret the basic concepts and functions of operating systems.
CO 2 Apply various CPU scheduling algorithms and practice deadlock prevention and 3 avoidance algorithms
CO 3 Compare and Contrast various memory management schemes. 2
CO 4 Demonstrate the functionality of file systems 3
CO 5 Examine the working principles of various operating systems 5

PART- A(10x2=20Marks)

(Answer all Questions)

RBT

 LEVEL. What is the difference between kernel and user mode? Explain how having two distinct $\mathbf{1} \mathbf{2}$ Modes aids in designing an operating system.
2. Classify the functions of operating system. $\mathbf{1} \quad \mathbf{4}$
3. Sketch the many-to-one model, the one-to-one model, and the many-to-many $\quad \mathbf{2} \quad \mathbf{3}$ Model of threads.
4. Determine the four situations under which CPU scheduling decisions take place.5
5. Describe the actions taken by operating system when a page fault occurs. $\quad \mathbf{3} \quad \mathbf{2}$
6. What is thrashing? How do you limit the effects of thrashing? $\quad \mathbf{3} \quad \mathbf{2}$
7. Sketch the structure of a hard disc and explain its components. 4
8. Show the schemes available for defining the logical structure of a directory. 4
9. Illustrate the various components that make up a full Linux system. $\mathbf{5} \mathbf{4}$
10. Provide an overview of the Win 32 function calls used to handle fibers, threads, and $\mathbf{5} \mathbf{2}$ processes.

PART- B (5x 14=70Marks)

11. (a) Summarize with a neat sketch the steps involved in making a system call also (14) 1 discuss in detail the types of system calls provided by an operating system
of Operating systems.
12. (a) Demonstrate the effectiveness of semaphores in solving dining philosopher's problem.

(OR)

(b) Explore the various proposals available for achieving mutual exclusion, so that while one process is busy updating shared memory in its critical region, no other process will enter its critical region and cause trouble
13. (a) Consider the following page reference string: $1,2,3,4,2,1,5,6,2,1,2,3$,
$7,6,3,2,1,2,3,6$. Estimate how many page faults would occur for the following replacement algorithms, assuming two, three, four, frames?
All frames are initially empty, first unique pages will cost one fault each.

- LRU replacement
- FIFO replacement
- Optimal replacement

(OR)

(b) (i) Consider a logical address space of 64 pages of 1,024 words each, mapped onto a physical memory of 32 frames.
a. How many bits are there in the logical address?
b. How many bits are there in the physical address?
(ii) Given six memory partitions of $300 \mathrm{~KB}, 600 \mathrm{~KB}, 350 \mathrm{~KB}, 200 \mathrm{~KB}$, 750 KB , and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size $115 \mathrm{~KB}, 500 \mathrm{~KB}, 358 \mathrm{~KB}$, 200 KB , and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.
14. (a) Examine file-system design tradeoffs, including access methods, file (14) 43 Sharing, file locking, and directory structures for university file system.

(OR)

(b) Illustrate the suitable approaches available to allocate space for files so that disk space is utilized effectively and files can be accessed quickly.
15. (a) Explain in detail the interesting features and design innovations of NTFS file system.

(OR)

(b) Summarize the Linux process model and illustrate how Linux schedules processes and provides inter-process communication.

$$
\frac{\text { PART- C }(\mathbf{1 x ~ 1 0}=\mathbf{1 0 M a r k s})}{\text { (Q.No. } 16 \text { is compulsory) }}
$$

16. Consider the following snapshot of system in which four resources $\mathrm{A}, \mathrm{B}, \mathrm{C}$ (10) and D are available. The system contains a total of 6 instances of $\mathrm{A}, 4$ of resource $\mathrm{B}, 4$ of resource C, 2 resource of D.

	Allocation				Maximum					Available			
	A	B	C	D	A	B	C	D	A	B	C	D	
P1	2	0	1	1	3	2	1	1	6	4	4	2	
P2	1	1	0	0	1	2	0	2					
P3	1	0	1	0	3	2	1	0					
4	0	1	0	1	2	1	0	1					

Compute what each process might still request.
i. Is the system in a safe state? Why or why not?
ii. Is the system deadlocked? Why or why not?
iii. If a request from P 3 arrives for $(2,1,0,0)$, can the request be granted immediately?

