

- Examine the various design approaches avail **(b)** of Operating systems.
- Demonstrate the effectiveness of semaphores 12. (a) problem.

(OR

- Explore the various proposals available for a **(b)** that while one process is busy updating shared no other process will enter its critical region a
- Consider the following page reference string: 13. (a) 7, 6, 3, 2, 1, 2, 3, 6. Estimate how many pa following replacement algorithms, assuming All frames are initially empty, first unique pages will cost one fault each.
 - LRU replacement
 - FIFO replacement
 - Optimal replacement

(**OR**)

- (i) Consider a logical address space of 64 p **(b)** mapped onto a physical memory of 32 f a. How many bits are there in the logical b. How many bits are there in the physic (ii) Given six memory partitions of 300 KB
 - 750 KB, and 125 KB (in order), how we worst-fit algorithms place processes of s 200 KB, and 375 KB (in order)? Rank th efficiently they use memory.
- Examine file-system design tradeoffs, inc 14. (a) Sharing, file locking, and directory structures (OR
 - Illustrate the suitable approaches available to **(b)** disk space is utilized effectively and files can

able to explore the components	Q. Cod (14)	le: 40' 1	7196 4
in solving dining philosopher's	(14)	2	3
R) achieving mutual exclusion, so d memory in its critical region, and cause trouble.	(14)	2	3
: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, age faults would occur for the two, three, four, frames?	(14)	3	2

pages of 1,024 words each,	(7)	3	2
frames.			
l address?			
cal address?			
, 600 KB, 350 KB, 200 KB,	(7)	3	2
ould the first-fit, best-fit, and			
size 115 KB, 500 KB, 358 KB,			
he algorithms in terms of how			
cluding access methods, file	(14)	4	3
for university file system.			
R)			
allocate space for files so that	(14)	4	3
be accessed quickly.			

⁽**OR**)

Q. Code: 407196

15. (a) Explain in detail the interesting features and design innovations of NTFS file (14) 5 5 system.

(OR)

Summarize the Linux process model and illustrate how Linux schedules (14) **(b)** 5 5 processes and provides inter-process communication.

PART- C (1x 10=10Marks) (Q.No.16 is compulsory)

Marks CO RBT LEVEL

Consider the following snapshot of system in which four resources A, B, C (10) 16. 3 2 and D are available. The system contains a total of 6 instances of A,4 of resource B,4 of resource C,2 resource of D.

	Allocation			Maximum			Available					
	Α	В	С	D	А	B	C	D	Α	В	С	D
P1	2	0	1	1	3	2	1	1	6	4	4	2
P2	1	1	0	0	1	2	0	2				
P3	1	0	1	0	3	2	1	0				
4	0	1	0	1	2	1	0	1				

Compute what each process might still request.

- Is the system in a safe state? Why or why not? i.
- Is the system deadlocked? Why or why not? ii.
- If a request from P3 arrives for (2, 1, 0, 0), can the request be granted iii. immediately?
