Q. Code: 662685

Reg. No.									
	l	l	l	I		l	l	I	

B. E / B. TECH.DEGREE EXAMINATION, MAY 2023

Seventh Semester

IT18702-BIG DATA ANALYTICS

 $(Information \ Technology)$

(Regulation 2018)

TIME:3 HOURS MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT
CO 1	Identify the characteristics of datasets and compare the trivial data and big data for various applications.
CO 2	Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.
CO 3	Apply scaling up machine learning techniques and associated computing techniques and technologies.
CO 4	Integrate machine learning libraries and mathematical and statistical tools with modern technologies like Hadoop and MapReduce.
CO 5	Investigate how Big Data is managed

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1	List the main characteristics of Big Data.	1	1
2	Why does one choose analytical system over conventional system?	1	3
3	What is the need of sampling and list out the characteristics of good sampling?	2	2
4	Give one real time example for overfitting and underfitting in model.	2	2
5	In a corpus of N documents, one document is randomly picked. The document	3	3
	contains a total of T terms and the term "data" appears K times. Write the correct		
	value for the product of TF (term frequency) and IDF (inverse-document-		
	frequency), if the term "data" appears in approximately one-third of the total		
	documents.		
6	What is the importance of the F-test in a linear model?	3	2
7	What is the need of Rack Awareness algorithm?	4	2
8	Compare and contrast the scheduling algorithms used in MapReduce?	4	3
9	How the relational operators are used in Pig Scripts?	5	2
10	Is Scaling possible in Hadoop? If yes, List the types of scaling.	5	2

Q. Code: 662685

PART- B (5x 14=70Marks)

(Restrict to a maximum of TWO subdivisions)

	(Restrict to a maximum of 1 wo stodivisions)								RBT LEVEL
11(a)		the conceptual ar	(14)	1	3				
	tools	•							
11(b)	(i)	In a random samp	nd	(7)	1	3			
11(0)	(i) In a random sample of 100 men taken from a village A, 60 are found to be consuming alcohol. In another sample of 200 men taken from							•	Č
		village B, 100 we							
		villages differ sign							
	(ii)	Consider a contr	(7)	1	3				
	(11)	received treatmen	(,)	-					
		received Treatme							
		effective than Tre							
			Response to						
			Cured	Not cured	Total (Rj)				
		TREATMENT A	90 (a11)	10 (a12)	100 (R1)				
		TREATMENT B	105 (a21)	45 (a22)	150 (R2)				
		Total (Cj)	195 (C1)	55 (C2)	250				
12(a)	Consider a following stream of data							2	3
		11 000 10111 0 11	00 101 10 whe	re 1 represents t	he movie viewed	by			
		ustomer. lain the algorithm t	to count the nun	nher of ones (aft	er k=15 timestam	m)			
		the following data	P)						
		C							
12(b)								2	3
	prop	ose a method to inc	crease the efficient	ency of blooms?					
13(a)	(a) A database has five transactions. Let min sup = 60% and min conf=80%								3
		ITEMS							
		Milk, Onion, Nut		~					
		Dhal, Onion, Nut Milk, Apple, Kiw		ognuri					
		Milk, Curd, Kiwi							
	T500								
		all frequent item s	n						
	rules	. Write appropriate	e R code.						

(OR) 13(b) (i) Explain Decision tree with an example to predict whether the (10)3 3 customers will buy a product. (ii) Differentiate Linear regression and Logistic regression. **(4)** 3 3 14(a) Consider a collection of literature survey made by a researcher in the form **(14)** 3 of a text document with respect to cloud and big data analytics. Using Hadoop and Map Reduce, write a program to count the occurrence of pre dominant key words. (OR) 14(b) Summarize the significances of MapReduce and discuss about Hadoop 14 3 distributed file system architecture with neat diagram. 15(a) Evaluate how the distributed synchronization is achieved using the key 5 14 5 components of HBase and Zookeeper architectures. OR 15(b) Assess how the design goals of IBM Infosphere Big-Insights and streams 5 5 14 are achieved with example code snippets.

Q. Code: 662685

Q. Code: 662685

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

16 Taking sentiment analysis as a case study, elaborate on the Real-time 10 2 4

Sentiment Analysis Platform with an example.

3