

(ii) Test for convergence the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + ...\infty$ (8)

Q. Code: 684862

		(OR)		
(b)	(i)	Discuss the convergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, $p > 0$.	(8)	
	(ii)	Test whether the series is conditionally convergent or not. $\frac{1}{2^3} - \frac{1+2}{3^3} + \frac{1+2+3}{4^3} - \frac{1+2+3+4}{5^3} + \dots \infty$	(8)	
(a)	(i)	Find the points on the parabola $y^2 = 4x$ at which the radius of the curvature is $4\sqrt{2}$.	(8)	
	(ii)	Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ subject to	(8)	
		the condition $a + b = 1$ where a and b are parameters. (OR)		
(b)	(i)	Find the equation of the circle of curvature of the curve at the point P on the curve $y = e^x$ where the curve crosses the y – axis.	(10)	
	(ii)	If the centre of curvature of curve is $\left(\frac{c}{a}\cos^3 t, \frac{c}{a}\sin^3 t\right)$, find the evolute of the curve.	(6)	
(a)	(i)		(8)	
(<i>a</i>)	(i)	If z is a function of x and y and $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$, then show that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial r} - y \frac{\partial z}{\partial v}$.	(0)	
	(ii)	$\partial u \partial v \partial x \partial y$ Examine $f(x, y) = x^3 + y^3 - 3axy$ for maximum and minimum values.	(8)	
	(OR)			
(b)	(i)	Expand $f(x, y) = \sin(xy)$ in powers of $(x-1)$ and $(y - \frac{\pi}{2})$ up to	(8)	
	(ii)	second degree terms. Find the shortest from the origin to the curve $x^2 + 8xy + 7y^2 = 225$ using the methods of Lagrange's multipliers.	(8)	
(a)	(i)	Change the order the integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ and hence	(8)	
	(ii)	evaluate. Find the area of the cardioid $r = a(1 - \cos \theta)$ by using double integration.	(8)	
		(OR)		
(b)	(i)	Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} dy dx$ by changing into polar coordinates.	(8)	
	(ii)	Find the volume of the tetrahedron bounded by the planes	(8)	
	~ /	$x = 0, y = 0, z = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$	、 /	

13.

14.

15.