Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

First Semester
MA16151 MATHEMATICS - I
(Common to all Branches Except MR)
(Regulation 2016)
Time: 3 Hours
Maximum : 100 Marks
Answer ALL questions
PART A - ($\mathbf{1 0} \times 2=\mathbf{2 0}$ marks $)$

1. If the sum of two Eigen values and trace of 3×3 matrix A are equal, find the value of |A|.
2. State the nature of quadratic form $2 x y+2 y z+2 z x$.
3. Discuss the convergence of the series $2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\ldots$
4. Name any two test used in series to test the convergence.
5. Find the radius of curvature of the curve $y=4 \sin x-\sin 2 x$ at $x=\frac{\pi}{2}$.
6. Find the envelope of the family of straight lines $y=m x+\frac{1}{m}, \mathrm{~m}$ being the parameter.
7. If $u=(x-y)^{4}+(y-z)^{4}+(z-x)^{4}$, then find the value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$.
8. If $u=x+y, y=u v$ find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
9. Evaluate $\int_{2}^{4} \int_{1}^{2} \frac{d x d y}{x y}$.
10. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d x d y d z$.

$$
\begin{equation*}
\text { PART B - (5 X16 = } 80 \text { marks }) \tag{8}
\end{equation*}
$$

11. (a) (i) Find the Eigen values and Eigen vectors of the matrix $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$.
Verify Cayley -Hamilton Theorem for the matrix
(ii)

$$
A=\left(\begin{array}{ccc}
13 & -3 & 5 \tag{16}\\
0 & 4 & 0 \\
-15 & 9 & -7
\end{array}\right) \text { and hence find } \mathrm{A}^{-1}
$$

(OR)
(b) Reduce the quadratic form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ to its canonical using an orthogonal transformation.
12. (a) (i) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!2^{n}}{n^{n}}$.
(ii) Test for convergence the series $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots \infty$

(OR)

(b) (i) Discuss the convergence of the p -series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>0$.
(ii) Test whether the series is conditionally convergent or not.
$\frac{1}{2^{3}}-\frac{1+2}{3^{3}}+\frac{1+2+3}{4^{3}}-\frac{1+2+3+4}{5^{3}}+\ldots \infty$
13. (a) (i) Find the points on the parabola $y^{2}=4 x$ at which the radius of the curvature is $4 \sqrt{2}$.
(ii) Find the envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$ subject to the condition $a+b=1$ where a and b are parameters.
(OR)
(b) (i) Find the equation of the circle of curvature of the curve at the point P on the curve $y=e^{x}$ where the curve crosses the $\mathrm{y}-$ axis.
(ii) If the centre of curvature of curve is $\left(\frac{c}{a} \cos ^{3} t, \frac{c}{a} \sin ^{3} t\right)$, find the evolute of the curve.
14. (a) (i) If z is a function of x and y and $x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$, then show that $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$.
(ii) Examine $f(x, y)=x^{3}+y^{3}-3 a x y$ for maximum and minimum values.
(OR)
(b) (i) Expand $f(x, y)=\sin (x y)$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ up to second degree terms.
(ii) Find the shortest from the origin to the curve $x^{2}+8 x y+7 y^{2}=225$ using the methods of Lagrange's multipliers.
15. (a) (i) Change the order the integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate.
(ii) Find the area of the cardioid $r=a(1-\cos \theta)$ by using double integration.

(OR)

(b) (i) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing into polar coordinates.
(ii) Find the volume of the tetrahedron bounded by the planes

$$
x=0, y=0, z=0 \text { and } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 .
$$

