Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Second Semester
MA16251 MATHEMATICS - II
(Common to all Branches Except MR)
(Regulation 2016)
Time: 3 Hours
Maximum : 100 Marks
Answer ALL questions
PART A-(10 X $2=\mathbf{2 0}$ marks $)$

1. Find a unit normal vector to the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
2. If $\vec{F}=5 x y \vec{i}+2 y \vec{j}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the curve $y=x^{2}$ between $x=1$ and $x=2$.
3. Find the particular integral of $(D-1)^{2} y=\sinh 2 x$.
4. Reduce $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=x$ into a differential equation with constant coefficients.
5. State the sufficient conditions for the existence of Laplace transform.
6. State initial and final value theorems on Laplace transform.
7. Is $f(z)=z^{3}$ analytic?
8. Find the image of $|z|=2$ under the transformation $w=3 z$.
9. Evaluate $\int_{C} \frac{\cos \pi z}{z-1} d z$ if C is $|z|=2$.
10. Find the residue of the function $f(z)=\frac{4}{z^{3}(z-2)}$ at a simple pole.

PART B-(5 X16 = 80 marks $)$
11. (a) (i) Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \vec{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k} \quad$ is irrotational and hence find its scalar potential.
(ii) Verify Green's theorem in a plane for the integral (8) $\int_{C}[(x-2 y) d x+x d y]$ taken around the circle $x^{2}+y^{2}=a^{2}$.

(OR)

(b) Verify Gauss Divergence theorem for the vector function (16) $\vec{F}=\left(x^{3}-y z\right) \vec{i}-2 x^{2} y+2 \vec{k}$ over the cube $\quad x=0, y=0, z=0$, $x=a, y=a, z=a$.
12. (a) (i) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=x \log x$.
(ii) Solve the simultaneous equation $\frac{d x}{d t}-y=t, \frac{d y}{d t}+x=t$.

(OR)

(b) (i) Solve $\left(D^{2}+4 D+3\right) y=e^{-x} \sin x$.
(ii) Using the method of variation of parameters, solve
$\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
13. (a) (i) Find $L\left[t^{2} e^{-3 t} \sin 2 t\right]$.
(ii) Using convolution theorem find inverse Laplace transform of $\frac{2}{(s+1)\left(s^{2}+4\right)}$.

(OR)

(b) (i) Find the Laplace transform of the square-wave function of period
a defined as $f(t)=\left\{\begin{array}{ll}1 & \text { when } 0<t<\frac{a}{2} \\ -1 & \text { when } \frac{a}{2}<t<a\end{array}\right.$.
(ii)

Solve the differential equation $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=e^{-t}$ with $y(0)=1$
and $y^{\prime}(0)=0$, using Lapalce transform.
14. (a) (i) If $w=f(z)$ is a regular function of z, prove that
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$.
(ii) Find the bilinear transformation that maps $z=0,1, \infty$ into points $w=-5,-1,3$ respectively. What are the invariant points of transformation?

(OR)

(b) (i) Determine the analytic function $f(z)=u+i v$ given that $3 u+2 v=y^{2}-x^{2}+16 x y$.
(ii) Find the image of the strip $1<x<2$ under the map $w=\frac{1}{z}$.
15. (a) (i) Using Cauchy's integral formula, evaluate $\int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z$ where
(i) C is the circle $|z|=\frac{3}{2}$.
(ii)

Find the Laurent's series expansion of $\frac{1}{z^{2}-3 z+2}$ in the region $1<|z|<2$.

> (OR)
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$ using Contour integration.

