Q. Code: 671910

Ref. No.

B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023

 First Semester
MA18151-ENGINEERING MATHEMATICS I

(Regulation 2018 \& 2018A)

MAX. MARKS: 100

TIME: 3 HOURS

CO 1 Develop the use of matrix algebra techniques which is needed for practical applications.
CO 2 Apply the skill to solve statistical problems under correlation and regression and acquire the knowledge for fitting the straight line and parabola.
CO 3 Develop skills to find the curvature, evolute and envelope of curves
CO 4 Acquire the skills to evaluate the functions of several variables
CO 5 Acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

PART- A (10 x $2=20$ Marks)
(Answer all Questions)

1 Two eigen values of the matrix $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$ are 1 each. Find the eigen values of A^{-1}. $\quad \mathbf{1} \quad \mathbf{2}$
2 Write down the quadratic form corresponding to the matrix $\left(\begin{array}{rrr}2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 3\end{array}\right) . \quad \mathbf{1} \quad \mathbf{2}$
3 Find the mean values of X and Y, for the following regression equations $\quad \mathbf{2} \quad \mathbf{2}$ $8 X-10 Y+66=0 ; 40 X-18 Y=214$.

4 What are the normal equations to fit a straight line by the method of least squares? $\mathbf{2}$
5 Find the curvature of the curve $x^{2}+y^{2}-6 x-4 y+9=0$ at any point on it. $\mathbf{3}$
6 Find the envelope of the family of lines $\frac{x}{t}+y t=2 c, t$ being the parameter. 3
7 If $u=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
$4 \quad 2$

8 If $x=u^{2}-v^{2}$ and $y=2 u v$, find the Jacobian of x and y with respect to u and v
9 Evaluate $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}$.

10 Change the order of integration in $\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y$.
$5 \quad 2$

PART- B (5 x $14=70$ Marks $)$

11(a) (i) Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$.
(7) 13
(ii) Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$ and hence
(7) 13
find A^{-1}.
(OR)
11(b) Reduce the quadratic form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+x_{3}{ }^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$ to canonical form (14) 1 by orthogonal transformation. Also find its rank, index, signature and nature.

12(a) Calculate the correlation coefficient for the following data. Also obtain the equations of lines of regression.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71
(OR)								

12(b) (i) Obtain the rank correlation coefficient for the following data:

X	68	64	75	50	64	80	75	40	55	64
Y	62	58	68	45	81	60	68	48	50	70

(ii) Fit a parabola by the method of least squares for the following data:
(7) 2

3

x	1	2	3	4	5	6	7	8	9	10
y	1.28	1.53	1.03	0.81	0.74	0.65	0.87	0.81	1.10	1.03

13(a)
(i) Show that the measure of curvature of the curve $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ at any

$$
\text { point }(x, y) \text { on it is } \frac{a b}{2(a x+b y)^{\frac{3}{2}}} \text {. }
$$

(ii) Find the equation of the circle of curvature of the curve $y^{2}=12 x$ at
(7) 3 $(3,6)$.

(OR)

13(b) (i) Find the evolute of the curve $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$.
(7) 3
(ii) Find the envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where the
parameters a and b are connected by the relation $a+b=c$.

14(a) (i) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that
(7) 4 $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+z)^{2}}$
(ii) Find the Taylor's series expansion of $e^{x} \sin y$ near the point $\left(-1, \frac{\pi}{4}\right)$ up to third degree terms.

(OR)

14(b) (i) Find the Jacobian of y_{1}, y_{2}, y_{3} with respect to x_{1}, x_{2}, x_{3} where $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$.
(ii) A rectangular box open at the top is to have a capacity of 108 cu.ms. (7) 3 Find the dimensions of the box requiring least material for its construction
15(a) (i) Change the order of integration in $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2 \sqrt{x}} d y d x$ and then evaluate it.
(7) 5
(ii) Find the smaller of the areas by bounded by $y=2-x$ and $x^{2}+y^{2}=4$.

3

15(b)
(i) Express $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d x y$ in polar coordinates and then evaluate it.
(ii) Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by triple integration

PART- C ($1 \times 10=10$ Marks

(Q.No. 16 is compulsory)

16 Find the maximum and minimum values of the function $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.

Marks \quad CO $\underset{\text { Level }}{\text { RBT }}$
(10) 4

