Q. Code: 671910							Q. Code: 671910									
Ref. No.				10	Chang	ge the order of	f integra	ation i	$n\int_{0}^{1}\int_{0}^{y}f(z)$	x, y)dxdy	/.				5	2
B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023 First Semester MA18151 - ENGINEERING MATHEMATICS I (Regulation 2018 & 2018A)				PART- B (5 x 14 = 70 Marks)							Marks	СО	RBT			
TIME: 3 HOURS MAX.	MARK	S: 10	00									(11	3)			LEVEL
CO1 Develop the use of matrix algebra techniques which is needed for practical applications. CO2 Apply the skill to solve statistical problems under correlation and regression and acquire the knowledge for fitting the straight line and parabola. 11(a) (i) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.								(7)	1	3						
CO 3 Develop skills to find the curvature, evolute and envelope of curves. CO 4 Acquire the skills to evaluate the functions of several variables CO 5 Acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage. (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$ and hence						and hence	(7)	1	3							
PART- A (10 x 2 = 20 Marks) (Answer all Questions)						find A^{-1} .										
	CO		RBT EVEL							(OR)						
$(2 \ 2 \ 1)$		EE		11(b)	Redu	ice the quadra	atic for	m x_1^2	$x^2 + 2x_2^2 + .$	$x_3^2 - 2x_1$	$x_{1}x_{2} + 2x_{1}x_{2}$	$x_2 x_3$ to can	onical form	(14)	1	3
1 Two eigen values of the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are 1 each. Find the eigen values of A^{-1} .	1		2		by orthogonal transformation. Also find its rank, index, signature and nature							nd nature.				
2 Write down the quadratic form corresponding to the matrix $\begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 3 \end{pmatrix}$.	1		2	12(a)	12(a)Calculate the correlation coefficient for the following data. Also obtain the equations of lines of regression.X6566676768697072					(14)	2	3				
3 Find the mean values of X and Y , for the following regression equations	2		2		Y		68	65	68	72	72	69	72			
$8X - 10Y + 66 = 0; \ 40X - 18Y = 214.$										(OR)						
4 What are the normal equations to fit a straight line by the method of least squares?	2		1	12(b)	(i) Obtain the rank correlation coefficient for the following data: (7)							(7)	2	3		
5 Find the curvature of the curve $x^2 + y^2 - 6x - 4y + 9 = 0$ at any point on it.	3		2			X 68	64	75	50 64	4 80	75	40 5	5 64			
6 Find the envelope of the family of lines $\frac{x}{t} + yt = 2c$, t being the parameter.	3	i	3			Y 62	58	68	45 8	1 60	68	48 5	0 70			
7 If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.	4		2		(ii) Fit a parabola by the method of least squares for the following data: (7) 2 3 x 1 2 3 4 5 6 7 8 9 10							3				
8 If $x = u^2 - v^2$ and $y = 2uv$, find the Jacobian of x and y with respect to u and v.	4		2			y 1.28 1	1.53 1.	.03 (0.81 0.74	0.65	0.87	0.81 1.1	0 1.03			
9 Evaluate $\int_{1}^{b} \int_{1}^{a} \frac{dxdy}{xy}$.	5		2	13(a)						(7)	3	3				
						point (x, y)	on it is-	$\frac{a}{2(ax-a)}$	(b) $(by)^{\frac{3}{2}}$.							

Q. Code: 671910

3

3

3

(ii) Find the equation of the circle of curvature of the curve $y^2 = 12x$ at (7) 3 (3,6).

(OR)

13(b) (i) Find the evolute of the curve
$$x = a(\cos t + t\sin t)$$
, $y = a(\sin t - t\cos t)$. (7) 3

(ii) Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$, where the (7) 3 parameters *a* and *b* are connected by the relation a + b = c.

14(a) (i) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that (7) 4 3

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x + y + z)^2}$$

(ii) Find the Taylor's series expansion of
$$e^x \sin y$$
 near the point $\left(-1, \frac{\pi}{4}\right)$ up (7) 4 3

to third degree terms.

(OR)

14(b) (i) Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 where (7) 4 3

$$y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3}.$$

(ii) A rectangular box open at the top is to have a capacity of 108 cu.ms. (7) 4 3Find the dimensions of the box requiring least material for its construction

15(a) (i) Change the order of integration in
$$\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$$
 and then evaluate it. (7) 5 3

(ii) Find the smaller of the areas by bounded by
$$y=2-x$$
 and $x^2+y^2=4$. (7) 5 3
(OR)

15(b) (i) Express $\int_{0}^{a} \int_{y}^{a} \frac{x^2}{\left(x^2 + y^2\right)^{\frac{3}{2}}} dx dx y \text{ in polar coord}$

(ii) Find the volume of the sphere $x^2 + y^2 + z^2$

<u>PART- C (1 x 10 =</u>

(Q.No.16 is com

16 Find the maximum and minimum values of the funct

$$f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$$

	Q. Code: 671910							
rdinates and then evaluate it.	(7)	5	3					
$a^2 = a^2$ by triple integration.	(7)	5	3					
<u>= 10 Marks)</u> npulsory)								
	Marks	CO	RBT LEVEL					
etion	(10)	4	3					