	Reg. No.												
))	MA18152-MATHEMATIC (Mar (Regular ME:3 HOURS 1 Apply the basic concepts of analytical 2 Use rules of differentiation to different 3 Apply differentiation to solve maxima 4 Perform integration to compute arc len Apply integration to compute multir	First Ser CS FOI tine Eng tion201 geome tiate fur and m gths, vo	meste R MA gineer 18 & A etry in nction inima olume	er ARIN <i>ing)</i> 2018. 1 mar ns. 1 protess of 1	IE EN 4) ine en blems. revolu	GIN ginee	EEF ering and s	RIN prol	G-I MA blen	X.M ns.	ofre		ion.
•	coordinates, in addition to change of o	rder.											
	PART- A ((Answer all			rks)									
											CO	RB LEV	
	Find the centre and radius of the sphere	$x^{2} + y^{2}$	$^{2}+z^{2}$	-2x	-4 <i>y</i> -	- 6 <i>z</i> -	-2=	0			1	2	
	Find the equation to the cone with vertex curve $x^2 + y^2 = 9, z = 3$.	x at the	origi	in an	d passi	ng tl	nroug	gh th	e		1	2	,
	If $f(x) = x^3 - 8x + 10$, find $f'(2)$.										2	2	
	Find the n th derivative of $sin(2x + 3)$										2	2	
	If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y}$	$z\frac{\partial u}{\partial x}$.									3	2)
	A flat circular plate is heated so that tge $u(x, y) = x^2 + 2y^2 - x$. Find the colder	temper				nt (x	, y) i	s			3	1	-
	Evaluate $\int \frac{\sin(\log x)}{x} dx$	1		T							4	2	1
	Find the average value of $f(x) = x^2$ in	the inte	erval	[—1,	2]						4	2	2
				-	-						5	2	
	Sketch the region of integration for $\int_{0}^{\infty} \int_{0}^{y}$.	ye ^x d	lxdy										
0	Evaluate $\int_{1}^{1} \int_{2}^{2} \int_{3}^{3} z dz dy dx$										5	2	

PART- B (5x 14=70Marks)

- 11(a) (i) Find the equation of the cone whose vert guiding curve is $x^2 - 2y + z^2 = 4x + 9$, x -
 - (ii) Find the equation of the sphere having th $x^{2} + y^{2} + z^{2} + 10y - 4z - 8 = 0, x + y + z =$

(OR

- 11(b) (i) Find the centre and radius of the circle gi $x^{2} + y^{2} + z^{2} + 2x - 2y - 4z - 19 = 0$ and x
 - (ii) Find the equation of the right circular cyl having as axis of the line $\frac{x-1}{2} = \frac{y-2}{1} =$
- 12(a) (i) Find the nth derivative of $\sin h 3x \sin 5x$.

(ii) If
$$y = \sin(\sin x)$$
 then prove that $\frac{d^2 y}{dx^2} + \tan x$

(OR

12(b) (i) Find the first 3 terms in the Maclaurin se

(ii) If
$$y = a \cos(\log x) + b \sin(\log x)$$
 the
 $x^2y_2 + xy_1 + y = 0$.

13(a) (i) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, prove that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{\left(x + y + z\right)^2}$$
(ii) If $u = f\left[\frac{y - x}{xy}, \frac{z - x}{xz}\right]$ show that $x^2 \frac{\partial u}{\partial x} + \frac{y - y}{y}$

(OR

(i) Find the maxima and minima of the func 13(b)

$$f(x, y) = x^{2} + y^{2} - 4x - 2y + 10.$$

- (ii) Find the maximum value of $x^m y^n z^p$ su x + y + z = a.
- 14(a) (i) Find the first and second moment of area x = 0 to x = 2 about y - axis.

Q. Code: 599129

	Marks	CO	RBT LEVEL
tex is at the origin and	(7)	1	
-y+z=7.			
he circle	(7)	1	3
= 3 as a great circle.			
R)			
given by	(7)	1	3
x + 2y + 2z + 7 = 0.			
linder of radius 2 and	(7)	1	3
$=\frac{z-3}{2}$.			
ς.	(7)	2	3
$an x \frac{dy}{dx} + y \cos^2 x = 0$	(7)	2	3
R)			
eries for $2x e^{-x}$	(7)	2	3
en prove that	(7)	2	3
at	(7)	3	3
$-y^2\frac{\partial u}{\partial y} + z^2\frac{\partial u}{\partial z} = 0$	(7)	3	3
R)			
ction	(7)	3	3
ubject to the condition	(7)	3	3
a under $y=1+x+x^2$ from	(7)	4	3

			Q. Code: 599129				
	(ii)	Find the area between the curve $y^2 = 4x$ and the line $2x - 3y + $	(7)	4	3		
		4 = 0.					
(OR)							
14(b)	(i)	Find the centroid of the region bounded by $y = x^2$ and $y = \sqrt{x}$.	(7)	4	3		
	(ii)	Evaluate $\int \left(\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}\right) dx$	(7)	4 4	3		
15(a)	(i)	Change the order of integration and hence evaluate	(7)	5	3		
	(ii)	$\int_{0}^{a} \int_{x}^{a} (x^{2} + y^{2}) dy dx$ Evaluate $\int_{0}^{1} \int_{0}^{2-z} \int_{0}^{1+y} dx dy dz$	(7)	5	3		
(OR)							

15(b) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ without transformation. (14) 5 3

<u>PART- C (1x 10=10Marks)</u>

(Q.No.16 is compulsory)

		Marks	со	RBT LEVEL
16	Find the extreme values of the function	(10)	2	2
	$f(x, y) = x^3 + y^3 - 3x - 12y + 20$		3	3

Q. Code: 599129