11(a) (i) Solve $\left(1+e^{x / y}\right) d x+e^{x / y}(1-x / y) d y=0$.
(ii) Solve $\left(x^{2}-y^{2}\right) d x-x y d y=0$.
(OR)
11(b) (i) Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$.
(ii) Find the orthogonal trajectory of family of curves $r^{n}=a \sin n \theta$.
(7) $\quad 1$

12(a) (i) Solve $\left(\mathrm{D}^{2}+9\right) \mathrm{y}=\sin 3 \mathrm{x}+\cos 3 \mathrm{x}$.
(ii) Solve $\left(D^{2}+a^{2}\right) y=\tan$ ax by the method of variation of parameters.
(7) 23
(7) 23
(7) 23

12(b) (i) Solve $\left[(2 x+5)^{2} D^{2}-6(2 x+5) D+8\right] y=6 x$.
(ii) Solve $x^{\prime}+2 x+3 y=0 ; y^{\prime}+3 x+2 y=2 e^{2 t}$.

13(a)
Verify the Gauss Divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ over the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
(OR)
13(b) Verify Stoke's theorem for $\vec{F}=(y-z+2) \vec{\imath}+(y z+4) \vec{\jmath}-x z \vec{k}$ over the open surface of the cube $x=0, y=0, z=0, x=2, y=2, z=2$ above the xy plane.

14(a) (i) If $f(z)=u(x, y)+i v(x, y)$ is an analytic then prove that family of curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{a}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{b}$ cut orthogonally.
(ii) Find the image of the infinite strips (i) $1 / 4<y<1 / 2$ (ii) $0<y<1 / 2$ under the transformation $w=1 / z$.

(OR)

14(b) (i) Determine the analytic function whose real part is $\frac{\sin 2 x}{\cos h 2 y-\cos 2 x} \quad$ (7) $4 \quad 3$
(ii) Find the bilinear transformation that maps the points $z=1, i,-1$ onto the \quad (7) $\quad \mathbf{4} \quad \mathbf{3}$ points $w=i, 0,-i$. Hence find the image of $|\mathrm{z}|<1$.

15(a) (i) Find the Laplace transform of $e^{-4 t} \int_{0}^{t} t \sin 3 t d t$.

Q. Code:469852

(ii) Find the Laplace transform of $f(t)=\left\{\begin{array}{l}a \sin \omega t, 0 \leq t \leq \frac{\pi}{\omega} \\ 0, \frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}\end{array}\right.$ and
(7) 5
$f(t+2 \pi / \omega)=f(t)$.

(OR)

15(b) (i) Find the inverse Laplace transform using convolution theorem of $\frac{2}{(s+1)\left(s^{2}+4\right)}$.
(ii) Using Laplace transform solve $y^{\prime \prime}-2 y^{\prime}+y=e^{t}, y(0)=2, y^{\prime}(0)=1$.
(7) 5

PART- C ($1 \times 10=10$ Marks $)$

(Q.No. 16 is compulsory)

16 Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \vec{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k}$ is irrotational and (10) 3 hence find its scalar potential.

