			59852	ode:40	Q. C										
PART- B (5 x 14 = 70 N												Reg. No.			
Solve $(1 + e^{x/y})dx + e^{x/y}(1 - x/y)dy = 0.$	(i)	11(a)		1 1		I		11	I	I	L				
Solve $(x^2 - y^2)dx - xydy = 0$.	(ii)				3	Y 202	NS, MA		XAMI Semest				B.E / B.TEC		
(OR)					G-II	ERINO	IGINI	RINE E	R MA	S FO	CS	EMATIC	MA18252-MAT		
Solve $x\frac{dy}{dx} + y = x^3y^6$.	(i)	11 <i>(</i> b)						0,	ngineeri 018 & 2			(Mai (Regula			
dx + y - x y.	(1)	11(0)	5: 100	IARK	MAX. I			,				(-8	RS	1E: 3 H(TIM
Find the orthogonal trajectory of family of curv	(ii)			-	-				-			-	stand the concepts o		CO 1
				al time	pply re	ns and a	equatio	erential	der dif	ner or	ghe	o solve hig	stand the procedure ering problems.		CO 2
Solve $(D^2+9)y = \sin 3x + \cos 3x$.	(i)	12(a)					S.	problem	solving	s for	us	tor calculu	e the concepts of ve	-	CO 3
Solve $(D^2 + a^2) y = \tan ax$ by the method of va	(ii)		ng	gineeri	rine en	d in ma	lely use	h are wi	ns whic	nctio	fun	analytic fi	stand the concepts o		CO 4
(OR)			ems	nrohl	ving th	ntly sol	efficie	e used it	which a	rms w	orn	ace transfo	ns. e knowledge in Lap	prob	CO 4
Solve $[(2x+5)^2D^2-6(2x+5)D+8]y = 6x$.	(i)	12(b)		, p1001	ving th	intry sor	cificit						cur in various branc	-	
Solve $x' + 2x + 3y = 0$; $y' + 3x + 2y = 2e^{2t}$.	(ii)							(andra)) — 20 N	10 - 1	(1)	DADT A 4			
Verify the Gauss Divergence theorem for $\vec{F} = \vec{F}$		13(a)									·	PART-A ((Answer			
the cube bounded by $x = 0$, $x = 1$, $y = 0$, y			RBT LEVEL	CO											
(OR)			2	1	here c	$c^2 = 0$ w	+ 2 <i>ax</i> +	$x^2 + y^2$	ircles of	cial ci	axi	of the coa	differential equation	Find the	1
erify Stoke's theorem for $\vec{F} = (y - z + 2)\vec{i} + (y - z + 2)\vec{i}$	Ve	13(b)											nt and a is a variabl	is cons	
the open surface of the cube $x = 0, y = 0, z = 0$	ov		2	1	n by	n give	motic	armonic	nple h	sim	of	uation of	he differential e	Form	2
e xy plane.	the												$s(nt+\alpha).$	x = A	
			2	2				os x.	$= e^{-x} c$	1) y	+ 1	$(D^2 + 2D - 2D)$	particular integral of	Find th	3
If $f(z) = u(x,y) + iv(x,y)$ is an analytic then pro-	(i)	14(a)	2	2	onstant	with co	quation	erential e	o a diff	x int	= ,	$^{2} + x D) y =$	m the equation $(x^2 I)$	Transf	4
u(x,y) = a and $v(x,y) = b$ cut orthogonally.													nts.	coeffic	
Find the image of the infinite strips (i) $\frac{1}{4} < y < y$	(ii)		2	3	$)\vec{k}$ is	-cy+2z	$\dot{t} + (-x)$	+2y-z)	(bx)	(+az)	y +	$\vec{A} = (x + x)$	a, b, c so tha	Evalua	5
the transformation $w = 1/z$.													nal.	irrotat	
(OR)			2	3				ndλ.	oidal, f	solen	s so	$(x+\lambda z)\vec{k}$ is	$(+3y)\vec{i} + (y-2z)\vec{j} +$	If $\vec{V} =$	6
Determine the analytic function whose real par	(i)	14(b)	2	4									at the function $f(z)$		7
Find the bilinear transformation that maps the p	(ii)		2	4			= z + 2i						image of $2x + y - 3$		8
points $w = i, 0, -i$. Hence find the image of $ z < i$			2	5									$e^{-3t}cos2t]$	Find L	9
			2	5									$\left(\frac{s}{(s+2)^2}\right)$	Find <i>L</i>	10
Find the Laplace transform of $e^{-4t} \int_{0}^{t} t \sin 3t dt$.	(i)	15(a)	_	~									\(S+2) ² /		- •

1

2

PART- B (5 x 14 = 70 Marks)

Q. Code:469852

PART- B (5 x 14 = 70 Marks)			
	Marks	CO	RBT LEVEL
$dx + e^{x/y}(1 - x/y)dy = 0.$	(7)	1	3
dx - xydy = 0.	(7)	1	3
(OR)			
x^3y^6 .	(7)	1	3
al trajectory of family of curves $r^n = a \sin n\theta$.	(7)	1	3
$\sin 3x + \cos 3x$.	(7)	2	3
= tan ax by the method of variation of parameters.	(7)	2	3
(OR)			
-6(2x+5)D+8]y = 6x.	(7)	2	3
$= 0$; y'+3x +2y =2e^{2t}.	(7)	2	3
Divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over	(14)	3	3
by $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.			
(OR)			
m for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz\vec{k}$	(14)	3	3
e of the cube $x = 0, y = 0, z = 0, x = 2, y = 2, z = 2$ above			
v(x,y) is an analytic then prove that family of curves	(7)	4	3
(x,y) = b cut orthogonally.			
S the infinite strips (i) $\frac{1}{4} < y < \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under	(7)	4	3
h w = 1/z.			
(OR)			
alytic function whose real part is $\frac{\sin 2x}{\cos h^2 y - \cos^2 x}$	(7)	4	3
ransformation that maps the points $z = 1, i, -1$ onto the	(7)	4	3
Hence find the image of $ z < 1$.			
transform of $e^{-4t} \int_{0}^{t} t \sin 3t dt$.	(7)	5	3

Q. Code:469852

3

(ii) Find the Laplace transform of
$$f(t) = \begin{cases} a \sin \omega t, 0 \le t \le \frac{\pi}{\omega} \\ 0, \frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega} \end{cases}$$
 and (7) 5
 $f(t + \frac{2\pi}{\omega}) = f(t)$.

(OR)

- 15(b) (i) Find the inverse Laplace transform using convolution theorem of (7) 5 3 $\frac{2}{(s+1)(s^2+4)}$
 - (ii) Using Laplace transform solve $y''-2y'+y=e^t$, y(0)=2, y'(0)=1. (7) 5 3

<u>PART- C (1 x 10 = 10 Marks)</u>

		Marks	CO	RBT LEVEL
16	Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$ is irrotational and	(10)	3	3
	hence find its scalar potential.			

Q. Code:469852

4