1

Q. Code:242772

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2023

Third Semester

MA18351 – ENGINEERING MATHEMATICS III

(Common to BIO, CHE, CVE, ECE, EEE &MEC)

(Regulation 2018 / Regulation 2018A)

MAX. MARKS: 100

CO

RBT

Express proficiency in handling higher order Partial differential equations. **CO1**

TIME:3 HOURS

- **CO2** Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series.
- Develop skills in the classification, formulation, solution, and interpretation of PDE models. **CO3**
- Develops the skill of conversion between time domain to frequency domain using the concept of **CO4** Fourier Transforms.
- Apply the systematic method for finding the impulse response of LTI systems described by CO5 difference equations: partial fraction expansion.

PART-A (10x2=20Marks)

		co	LEVEL
1.	Form the partial differential equation by eliminating the arbitrary constants a and b from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$	1	2
2.	Solve $p + q = pq$.	1	2
3.	Find the root mean square value of $f(x) = x^2$ in the interval $(0, \pi)$.	2	2
4.	If $f(x)$ is an odd function defined in $(-l, l)$, what are the values of a_0 and a_n ?	2	2
5.	What are the possible solutions of one-dimensional wave equation?	3	1
6.	The ends A and B of a rod of length 10cm long have their temperature kept at $20^{\circ}c$ and $70^{\circ}c$. Find the steady state temperature distribution on the rod.	3	2
7.	Find the Fourier sine transform of $f(x) = 1$ in $(0, l)$.	4	2
8.	Define Fourier cosine transform pair.	4	1
9.	Find the Z transform of $(n+1)(n+2)$.	5	2
10.	Form difference equation from $y_n = a + b3^n$	5	2

PART- B (5x 14=70Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	Solve $x(y-z)p + y(z-x)q = z(x-y)$.	(7)	1	3
	(ii)	Form the PDE by eliminating arbitrary function from $z = f(xy/z)$.	(7)	1	3

- **(b)** (i) Solve p(1+q) = qz(ii) Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$
- 12. (a) (i) Find the Fourier series expansion of f(x)

prove
$$\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$

(ii) Find the half range Fourier Sine Series of the sum of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$.

(i) Find the Fourier cosine series expansion **(b)**

$$0 < x < \pi$$
.

(ii) The table value of the function y = f(x) i Fourier series up to the second harmonic

X	0	π/3	2 π/ 3	π	4
У	1.0	1.4	1.9	1.7	1

13. (a) A tightly stretched string with fixed end points x = 0 and x = l is initially at (14) rest in equilibrium position. If it is set vibrating giving each point a velocity $\lambda x(l-x)$, find the displacement of any point on the string at a distance from one end at any time t.

(**OR**)

A rectangular plate with insulated surfaces is 8 cm wide and so long 3 3 **(b)** (14) compared to its width that it may be considered as infinite length. If the temperature along the short edge v = 0is given by $u(x,0) = 100 \sin \frac{\pi x}{8}$, 0 < x < 8, while the two long edges x = 0 and x = 10 as well as the other short edge are kept at $0^{\circ}c$, find the steady state temperature function u(x,y).

, ,		1 1	
$f(x) = x^2$ in $-\pi < x < \pi$. Hence	(7)	2	3
f $f(x) = a$ in (o, l) . Deduce	(7)	2	3
c) of $f(x) = x(\pi - x)$ in	(7)	2	3
is given below. Find the	(7)	2	3

4 π/3	5 π/ 3	2 π
.5	1.2	1.0

3 3

Q. Code:242772

Find the Fourier transform of f (x) defined as $f(x) = \begin{cases} a - |x|, & \text{for } |x| < a \\ 0, & \text{for } |x| > a > 0. \end{cases}$ (14) 4 14. (a) 3 Hence show that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2} \operatorname{and} \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}.$ (**OR**) (i) Find the Fourier cosine transform of e^{-4x} and hence prove that 3 (7) 4 **(b)** $\int_{0}^{\infty} \frac{\cos 2x \, dx}{x^2 + 16} = \frac{\pi \, e^{-8}}{8}$ (ii) Using Parseval's identity, prove that $\int_{0}^{\infty} \frac{dx}{(a^2 + x^2)(b^2 + x^2)} = \frac{\pi}{2ab(a+b)}.$ (7) 4 3 (i) Find the z-transform of $\cos n\theta$. 5 3 15. (a) (7) (7) 5 (ii) Find the Z-transform of $\frac{1}{(n+1)(n+2)}$. 3 (OR) Using partial fractions find the inverse Z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$. **(b)** (7) 5 (i) 3 Solve the difference equation using z-transform $y(n+2) + 6y(n+1) + 9y(n) = 2^n$ given that y (0) = 0 and y (1) = 0 (ii) (7) 5 3 PART- C (1x 10=10Marks) (Q.No.16 is compulsory)

Marks CO RBT LEVEL 16. Find the inverse Z-transforms of $\frac{8z^2}{(2z-1)(4z-1)}$ using Convolution theorem (10) 5 3

Q. Code:242772

4