Reg. No.

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Third Semester

MA18352-DISCRETE MATHEMATICS

(Common to CSE \& INT)
(Regulation2018 \& 2018A)

TIME: 3 HOURS

CO1 Acquire the concepts of logic to test the lucidity of a program.
CO2 Describe and apply the counting principles in computer simulations.
CO3 Develop graph theory tools for day - to - day applications.
CO4 Expose the concepts and properties of algebraic structures such as groups, rings and fields.
CO5 Categorize Boolean algebraic structures on numerous levels
$\left.\begin{array}{llll}\text { PART- A (10x2=20 Marks) } \\ \text { (Answer all Questions) }\end{array}\right)$

PART- B (5x 14=70 Marks)

(ii) Prove that the maximum number of edges in a simple graph is (7) 3 $n(n-1)$

14(a) (i) Examine whether $G=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \neq 0, a \varepsilon \mathbf{R}\right\}$ forms an abelian group (7) 4 under matrix multiplication where \mathbf{R} is the set of all real numbers
(ii) Find all the subgroups of $\left(\boldsymbol{Z}_{\boldsymbol{g}},+_{\boldsymbol{g}}\right)$
(7) 4
(OR)
14(b) State and prove the Lagrange's theorem on groups. Is the converse true? (14) 4 Justify your answer.

15(a) (i) If S_{42} is the set of all divisors of 42 and D is the relation "divisor of"
(7) 5 on S_{42}, prove that $\left\{S_{42}, D\right\}$ is a complemented lattice
(ii) Establish De Morgan's laws in a Boolean Algebra.
(7) 5
(OR)
15(b) (i) Let $S=\{a, b, c\}$. Show that ${ }^{(\mathcal{P}(S), ~} \subseteq$) is a partailly ordered set.
(ii) Prove that every chain is a distributive lattice
(7) $5 \quad 3$
(7) 5

PART- C ($\mathbf{1 \times 1 0 = 1 0 ~ M a r k s)}$

(Q.No. 16 is compulsory)

Marks	CO	RBT
LEVEL		
(10)	2	3

16 Find the number of distinct permutations that can be formed from all the letters
(10) 23 of each word (1) RADAR (2) UNUSUAL (3) MATHEMATICS.

