1

Q. Code: 950562

	Reg. No.														
	DE / DTECH DECD			A R <i>T</i>		T		м	A T 7	204	12				
	B.E / B.TECH. DEGR T	EE I 'hird	EXA Sem	AIVI. ieste	IINA r		UN	, IVI	AY	204	23				
	MA18352-DISC	CRE	ТЕ	MA	TF	IEN	MA'	ТΙ	CS						
	(Comm (Regulation)	ion t		SE 8	2 IN	T)									
TIME: 3 HOURS MAX MARKS: 100										00					
CO1	Acquire the concepts of logic to test th	e luc	idit	y of	a pr	ogra	ım.								
CO2	Describe and apply the counting prince Develop graph theory tools for day $-t$	iples	in c	omp ppli	uter catio	sim	nulat	10115	5.						
CO4	Expose the concepts and properties of	algel	brai	stru	ictu	res s	such	as g	grou	ps, r	ings	and	l fiel	ds.	
CO5	Categorize Boolean algebraic structure	es on	nun	nero	us le	evel	s.			•	C				
	PART- A	(10	x2=	=2.0	Ma	rks)								
	(Answer	all (A2 Ques	tion	s)	110	,								
•		•										(C O	l Ll	RBT EVEL
1	Show that the propositions $p \rightarrow q$ and r	pVq	are	equ	ival	ent.							1		2
2	Write the converse, inverse and contrapo	ositiv	ve of	f"If	you	wor	k ha	rd,	then	you	wil	l	1		2
	be rewarded".														
3	If seven colours are used to paint fifty	y bic	ycle	es, tl	nen	sho	w th	nat a	nt le	ast e	eigh	t	2		2
	bicycles must be of the same colour.														
4	Find the recurrence relation for the Fibo	nacc	i seo	quen	ce.								2		2
5	How many edges are there in a graph w	ith 1	0 ve	rtice	s, ea	ach	of de	egre	e 5?				3		2
6	For the degree sequence 3,3,3,2,1 either	r dra	w a	grap	oh if	it e	xist	s or	exp	lain	why	7	3		2
	no graph exists.														
7	Give an example of a semi-group which	is n	ot a	mon	oid.								4		2
8	Let Z be the group of integers	witł	ı b	inar	y o	pera	tion		def	ined	by	7	4		2
	$a * b = a + b - 2$ for all $a, b \in \mathbb{Z}$. Find the	ne ide	entit	y ele	emer	nt of	the	gro	up 🕻	Z,*)					
9	Draw the Hasse diagram of $D_{30} = \{1,2,3\}$,5,6,1	10,15	5,3 0 }									5		2
10	Let $X = \{1, 2, 3, 4, 5, 6\}$ and R be the relation	on de	efine	ed by	/ (x.,	у)Е	R if	and	onl	y if			5		2
	x - y is divisible by 3. Find the element	ts of	R.												

PART- B (5x 14=70 Marks)

11(a) (i) Obtain the principal disjunctive no conjunctive normal form of $(p \land q) \lor (T p \land r)$ (ii) Show that T(pV(TpAq)) and TqAq are

(OR

- 11(b) (i) Show that $((p \rightarrow q) \land (r \rightarrow q)) \Rightarrow (p \lor r) \rightarrow q$
 - (ii) Show that $r \rightarrow s$ can be derived from the and 🧖 .
- Using induction principle show that n^2 + (i) 12(a)
 - (ii) Find the number of integers between 1 an divisible by any of 2,3,5,7

(OR

- 12(b) (i) A total of 1232 students have taken a c taken a course in French and 114 have Further 103 students have taken courses 23 students have taken courses in both S students have taken courses in both Fr students have taken a course in at lea Russian, how many students have ta languages?
 - (ii) Use generating functions to solve the rec S(n+1) - 2S(n) = 4n with $S(0) = 1, n \ge 1$
- 13(a) (i) Prove that a simple graph with n vertices

have utmost $\frac{(n-k)(n-k+1)}{2}$ edges.

(ii) Draw an undirected graph represented by

matrix and hence verify the handshaking (OR

13(b) (i) Determine whether the following gra Hamilton circuit? If yes, name the circuit.

	Marks	CO	RBT LEVEL
rmal form and principal	(7)	1	3
logically equivalent.	(7)	1	3
()			
	(7)	1	3
premises $p \rightarrow (q \rightarrow s)$, $\forall r \lor p$	(7)	1	3
- $2n$ is divisible by 3.	(7)	2	3
nd 250 both inclusive that are	(7)	2	3
N			
· · · · · · · · · · · · · · · · · · ·		•	2
course in Spanish, 8/9 have	(7)	2	3
in both Spanish and French			
Spanish and Russian, and 14			
rench and Russian. If 2092			
st one of Spanish, French,			
ken a course in all three			
currence relation	(7)	2	3
U			
s and k components can	(7)	3	3
	(7)	U	U
y the following adjacency	(7)	3	3
$ 1 1 1 1 \\ 1 0 0 1 $			
theorem. $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$			
aph has an Euler circuit/	(7)	3	3

(ii)	Prove that the	maximum	number	of	edges	in	а	simple graph is	(7)	3	3
	n (n−1)										
	2.										

14(a)	(i)	Examine whether $G = \{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \neq 0, a \in \mathbb{R} \}$ forms an abelian group under matrix multiplication where \mathbb{R} is the set of all real numbers.	(7)	4	3
	(ii)	Find all the subgroups of $(\mathbf{Z}_{g'}, +_{g})$	(7)	4	3
		(OR)			
14(b)	State Justi	e and prove the Lagrange's theorem on groups. Is the converse true? fy your answer.	(14)	4	3
15(a)	(i)	If S_{42} is the set of all divisors of 42 and D is the relation "divisor of" on S_{42} , prove that $\{S_{42}, D\}$ is a complemented lattice.	(7)	5	3
	(ii)	Establish De Morgan's laws in a Boolean Algebra.	(7)	5	3
		(OR)			
15(b)	(i)	Let $S = \{a, b, c\}$. Show that (P(S), \subseteq) is a partailly ordered set.	(7)	5	3
	(ii)	Prove that every chain is a distributive lattice.	(7)	5	3

PART- C (1x 10=10 Marks)

(Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL
16	Find the number of distinct permutations that can be formed from all the letters	(10)	2	3
	of each word (1) RADAR (2) UNUSUAL (3) MATHEMATICS.			

Q. Code: 950562