

accidents per crossing per year.

- A sample of size 13 gave an estimated popula Sample of size 15 gave an estimate of 2.5. Calcu
- What is the expected frequency of 'a' in the fol

a b d С

The power spectral density function of a zero

{*X*(*t*)} is given by *S*(ω) = {1, $|\omega| < \omega_0$ 0, *elsewhere*. Find

Can the function $\frac{\omega+7}{\omega^2+5}$ be valid power density sp

PART- B (5 x 14 = 70 Marks)

											Marks	CO	RBT LEVEL
Calcula	te the quar	tile	devia	tion	and	its co	oeffic	cient from the	e following d	ata:	(7)	1	3
Marks	obtained	10	20	30	40	50	60]					
No. f S	Students	4	7	15	8	7	2						
Sixty percent of new drivers have had driver education. During their first year, new drivers without driver education have probability 0.08 of having an accident, but new drivers with driver education have only a 0.05 probability of an accident. What is the probability a new driver has had driver education, given that the driver has had no accident the first year? (OR)								(7)	1	3			
late the	e mean, me	edian	and	varia	ance	of th	e fol	lowing data:			(14)	1	3
ght m)	95 - 105	1	05 -	115	11	5 – 1	125	125 – 135	135 – 145				
ber of dren	19	2	23		36			70	52				
The d f(x) =	lensity fi $kx(2-x)$,	uncti 0≤.	on $x \le 2$	of . Fii	a nd <i>k</i> ,	rand mea	om n, va	variable $\sum_{i=1}^{n}$	X is give ^h moment.	n by	(7)	2	3
The j	oint pro	babil	lity	mas	SS I	funct	tion	of (X, Y)) is give	n by	(7)	2	3
p(x, y)	=k(2x+3)	y),	x = 0	,1,2,	, y=	=1, 2, 1	3. F	ind (i) the v	value of k (ii) the			
margina	al probabi	ility	mas	s fu	nctic	on o	fΧ	and Y and	d (iii) cond	itional			

											Marks	CO	RBT LEVEI
(i) Calcula	te the quar	tile	devia	tion	and	its co	oeffic	cient from th	e following d	lata:	(7)	1	3
Marks	obtained	10	20	30	40	50	60						
No. f	Students	4	7	15	8	7	2						
(ii) Sixty p year, no acciden of an ac given th	ercent of ew drivers at, but new ccident. W hat the driv	new with driv hat i ver h	driv nout d vers v is the as ha	ers h lriver vith o prob d no	ave edu drive abili acci	had catio er ed ity a dent	drive on have ucation new the f OR)	er education ve probabilit on have only driver has ha irst year?	. During the y 0.08 of hav y a 0.05 prob ad driver edu	ir first ying an pability cation,	(7)	1	3
Calculate the	e mean, me	ediar	n and	varia	ince	of th	e fol	lowing data:			(14)	1	3
Height	95 - 105	1	105 -	115	11	5 – 1	125	125 - 135	135 - 145]			
(in cm)													
Number of Children	19	4	23		36)		70	52				
	1									J			
(i) The d	lensity f	unct	ion	of	a	rand	om	variable	X is give	n by	(7)	2	3
f(x) =	kx(2-x),	$0 \leq$	$x \le 2$. Fir	nd <i>k</i> ,	mea	n, va	riance and r	th moment.				
(ii) The j	oint pro	babi	lity	mas	S	funct	tion	of (X, Y)) is give	n by	(7)	2	3
p(x, y)	=k(2x+3)	y),	x = 0),1,2,	, y=	=1,2,1	3. F	ind (i) the	value of k (ii) the			
margin	al probabi	lity	mas	s fu	nctio	on o	fХ	and Y an	d (iii) cond	litional			

- - probability distributions X given Y = 2.

(**OR**)

Q. Code: 937234

ation variance of 3.0, while another	4	2	
ulate the test statistic.			
lowing 2 x 2 contingency table?	4	2	
	-	2	
mean wide-sense stationary process	5	3	
$R(\tau).$			
pectrum?	5	2	

Q. Code: 937234

(7)

(7)

3

3

2

3

3

3

3

3

3

3

3

(**OR**)

- The atoms of radio active element are randomly disintegrating. If every gram (7) (i) **(b)** of this element, on average, emits 3.9 alpha particles per second, what is the probability during the next second the number of alpha particles emitted from 1 gram is (i) atmost 6 (ii) atleast 2 and (iii) atleast 3 and atmost 6?
 - (ii) A coin is tossed 300 times. Using central limit theorem, find the probability (7) 2 that number of heads obtained is between 140 and 150.
- A college conducts both day and night classes intended to be identical. A (7) 3 13.(a) (i) sample of 100 day students yields examination results as under: $\overline{x}_1 = 72.4$ and $\sigma_1 = 14.8$. A sample of 200 night students yields examination results as under $\overline{x}_2 = 73.9$ and $\sigma_2 = 17.9$. Are the two means statistically equal at 5% level?
 - On a certain day, 74 trains were arriving on time at Delhi station during the (ii) (7) 3 rush hours and 83 were late. At New Delhi, there were 65 on time and 107 late. Is there any difference in the proportions arriving on time at the two stations? (Test at 5% level of significance)

(**OR**)

- To test the claim that the resistance of electric wire can be reduced by more (i) **(b)** than 0.050 ohm by alloying, 32 values obtained for standard wire yielded $\overline{x_1} = 0.136$ ohm and $s_1 = 0.004$ ohm, and 32 values obtained for alloyed wire yielded $\overline{x_2} = 0.083$ ohm and $s_1 = 0.005$ ohm. At the 0.05 level of significance, does this support the claim?
 - (ii) A study shows that 16 of 200 tractors produced on one assembly line required extensive adjustments before they could be shipped, while the same was true for 14 of 400 tractors produced on another assembly line. At the 0.01 level of significance, does this support the claim that the second production line does superior work?
- 14.(a) (i) Two independent samples of sizes 8 and 7 contained the following values. (7) 4

Sample1	19	17	15	21	16	18	16	14
Sample2	15	14	15	19	15	18	16	

Is the difference between the sample means significant?

The following figures show the distribution of digits in number chosen at (7) (ii) 4 random from a telephone directory:

Digits:	0	1	2	3	4	5	6	7	8	9
Frequency:	1026	1107	997	966	1075	933	1107	972	964	853

Test at 5% level whether the digits may be taken to occur equally frequently in the directory.

(b) (i)

15.(a)

Two random samples of sizes 9 and 6 gave the following values of the variable.

										_		
Sample 1	15	22	28	26	18	17	29	21	24			
Sample 2	8	12	9	16	15	10	-	-	-			
Fest wheth	er th	nere	is ar	ny si	gnifi	canc	e di	ffere	nce	between	the	population

variances at 5% level of significance.

(ii) One thousand girls in a college were graded according to their I.Q. and the (7) economic conditions of their homes. Use Chi-square test to find out whether there is any association between economic conditions at home and I.Q. of girls:

			I.Q.	
		High	Low	Total
Economia	Rich	100	300	400
conditions	Poor	350	250	600
conditions	Total	450	350	1000

Consider two random process $X(t) = 3\cos(\omega t + \theta)$ and $Y(t) = 2\cos(\omega t + (14))$ 5 3 $\theta - \pi/2$) where θ is a random variable uniformly distributed in $(0, 2\pi)$. Prove that $\sqrt{R_{XX}(0), R_{YY}(0)} \ge |R_{XY}(\tau)|$.

(**OR**)

- Show that the random process X(t)**(b)** (i) stationary, if A and ω_0 are constants and θ variable in $(0, 2\pi)$.
 - (ii) Find the power spectral density of a wide sense stationary process with (7) 5 3 autocorrelation function $R(\tau) = e^{-\alpha \tau^2}$.

PART- C (1 x 10 = 10 Marks)

(O.No.16 is co

Let X and Y be random variables hav 16. (3(2), 2) 0 1 1 0 1

$$(x, y) = \begin{cases} \frac{1}{2}(x^2 + y^2), & 0 \le x \le 1, \\ 0 & 0 \end{cases}$$
 otherwise

coefficient between X and Y.

4 3

$= A\cos(\omega_0 t + \theta)$ is	wide-sense	(7)	5	3
is a uniformly distrib	uted random			

ompulsory)		Marks	CO	RBT LEVEL
ing joint	densit	ty function	(10)	2	3
Find	the	correlation			