	Q. Co			Q. Code: 7 PART- B (5 x 14 = 70 Marks)					
Reg. No.								C0 1	RBT LEVEL 2
				11(a)	(i)	In a survey of 270 college students, it is found that 64 like brussels sprouts, 94 like broccoli, 58 like cauliflower, 26 like both brussels sprouts and broccoli, 28	Ι	1	3
B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023						like both brussels sprouts and cauliflower, 22 like both broccoli and cauliflower,			
	Third Semester					and 14 like all three vegetables. How many of the 270 students do not like any of			
MA18354 - MATHEMATICS FOR DATA ANALYSIS						these vegetables?			
	(Artificial Intelligence and Data Science)		(ii)	Use mathematical induction to prove that $n^3 - n$ is divisible by 3 whenever <i>n</i> is	7	1	3		
(<i>Regulation 2018 / 2018A</i>)					()		•	-	C
TIME: 3 HOURS MAX. MARKS:					a positive integer.				
CO1 The students will be able to apply the concepts of basic principles of Combinatorics Applications.			na ns			(OR)			
CO	2 The students will be able to understand the basic concepts in Number Theory and its App Data Science.	olicati	ons in	11(b)	(i)	Solve the recurrence relation $a_n = 8a_{n-1} + 10^{n-1}$ with the initial condition $a_0 = 1$.	7	1	3
CO	1 1 1 1 0	which o	can be		(ii)	The English alphabet contains 21 consonants and five vowels. How many strings	7	1	3
CO	used in data analytics.The students will be able to understand the fundamental concepts of graph theory.					of six lowercase letters of the English alphabet contain?			
CO	5 The students will be able to understand the advanced concepts of graph theory and its	applic	ations			a) exactly one vowel?			
to Computer science.						b) exactly two vowels?			
PART- A (10 x 2 = 20 Marks)						c) at least one vowel?			
(Answer all Questions)				1 2 (a)	(i)	Prove that the gcd of the positive integers <i>a</i> and <i>b</i> is a linear combination of <i>a</i>	7	2	3
		CO	RBT LEVEL	12(a)	(1)		/	2	5
1.	State the Pigeonhole principle.	1	1		(***)	and b.	_	•	
2.	How many ways are there to select five players from a 10-member tennis team to make	1	2		(ii)				3
	a trip to a match at another school?					it.			
3.	Express (28, 12) as a linear combination of 28 and 12.	2	2			$1 \cdot 9 + 2 = 11$			
4.	Find the canonical decomposition of 2520.	2	2			$12 \cdot 9 + 3 = 111$			
5.	If S_{XX} =132000; S_{YY} = 2.13745; S_{XY} = 505.40, find the residual sum of squares.	3	2			$123 \cdot 9 + 4 = 1111$			
6.	Write the normal equations for polynomial regression to fit a second degree	3	1			$1234 \cdot 9 + 5 = 11111$			
	polynomial.					$12345 \cdot 9 + 6 = 111111$			
7.	How many edges are there in a graph with 10 vertices each of degree six?	4	2			$123456 \cdot 9 + 7 = 1111111$			
8.	Determine whether the following degree sequence is graphic. If yes, draw the graph	4	2			(OR)			
	having the degree sequence.			12(b)	(i)	Using the Euclidean algorithm, express (4076, 2076) as a linear combination of	7	2	3
	3, 3, 3, 3, 2			(~)	(-)	4076 and 2076.		-	-
9.	Explain a maximum matching with an example.	5	2		(ii)		7	r	3
10.	Give an example of an M-augmenting path.	5	2		(ii)	Show that $[a,b] = \frac{ab}{(a,b)}$, where a and b are positive integers.	1	4	5

Q. Code: 721472

7

7

4

3 3

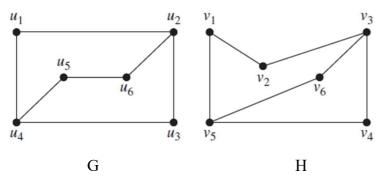
3

13(a) A textile company, wanting to know the effect of temperature on the tearing strength of 14 3 3

a fiber, obtained the data shown in the following table.

Temperature	20	22	25	35	18	29	31	16	13	48		
$\left(\circ C \right)^{*}$												
X												
Tearing	1600	1700	2100	2500	1550	2600	2550	1100	1050	2650		
strength (g)												
у												
Fit a straight li	ne to th	ne giver	n data b	y the n	nethod	of least	square	s and u	se it to	predict		
the tearing strength one can expect when the temperature is $29^{\circ}C$.												
Also find the residual sum of squares and construct a 95% confidence interval for the												
regression coef	fficient	α . $(t_{0.0}$	25,8 = 2	.306)								
(OR)												
(i) The following are data on the ages and incomes of 5 executives working for the 7 3 3									3			
same company and the number of years they went to college:												
Age x ₁				37		45	38	42	3	31		

Age x ₁	37	45	38	42	31
Years college x ₂	4	0	5	2	4
Income(dollars) y	71,200	66,800	75,000	70,300	65,400

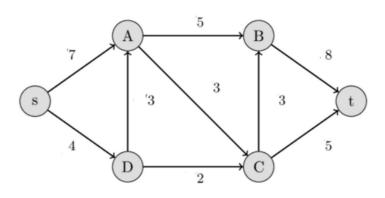

Fit an equation of the form $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ to the given data.

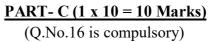
(ii) Fit a second degree parabola to the following data:

13(b)

					3		
У	1.1	1.3	1.6	2	2.7	3.4	4.1

Determine whether the graphs G and H are isomorphic. 14(a) (i)




(ii) Show that every non trivial tree has at least two vertices of degree one. 7 4

- 14(b) Show that a non-empty connected graph is Eulerian if and only if it has no vertices of 14 4 3 odd degree.
- 15(a) Show that a matching M in G is a maximum matching if and only if G contains no M- 14 5 3 augmenting path.

(ORP

15(b) Find the maximum flow from source s to sink t.

16 Show that if G is a tree, then e = v - 1.

3

OR

Q. Code: 721472

14 5 3

Marks	CO	RBT
		LEVEL
10	3	3