	Q. Co	de: 22	3868									
	Reg. No.								PAR	Г- В (:	5 x 14 =	=
	B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023			11. (a)	(i) So	lve the	follo	vina sv	stem c	feaus	ations b	יר
Fourth Semester						ive the		wing sy	Stelli C	1 cqua	110115 0	<i>'</i> .
MA18451 – COMPUTATIONAL METHODS (Common to EE, CH, CE, ME & MR)						x + 4y	+ 5 <i>z</i>	= 18,	2x -	y + 8z	z = 13	,
	(Regulation 2018)							auss- Jo				
Τ	IME: 3 HOURS MAX. MA	ARKS:	100		2	x + y -	+z =	9,	2x - 3	3y + 4	4z = 13	3
CO		imation	-								(OR))
C		IIIIatioi	1.	(b)	(i) Us	ing Ga	uss Jo	ordan m	ethod	find th	ne inver	
) 4 Acquire the skill to solve ordinary differential equation numerically.				-	-	-					
CO	0.5 Acquire the skill to solve partial differential equation numerically.				2	6 8	6					
	PART- A (10 x 2 = 20 Marks)				2	6	8					
	(Answer all Questions)				(ii) So	lve usi	ng Ga	uss- Se	idel m	ethod	correct	t
	(Thiswer an Questions)	CO	RBT		10.	x-5y	-2z =	3				
			LEVEL		4x	-10y	+3z =	-3				
1.	Show that the Newton Raphson formula for $\frac{1}{\sqrt{N}}$ is $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{Nx_n})$.	1	3		<i>x</i> -	- 6 <i>y</i> + 1	10z = -	-3				
2.	Explain diagonally dominant.	1	2	12. (a)	Find the	e value						۱
						x	2	0	23		26	
3.	Using Lagrange's formula fit a polynomial to the data.	2	3			y	0	.3420	0.39	07	0.4384	1
	x -1 1 2										(OR))
	y 7 5 15			(b)	Find <i>f</i> (8) and	f(15)	by New	vton's	divide	d diffe	r
4.	Find the third order divided differences with arguments 2,4,9,10 of the function	2	3			x	4	5	7	10	11	
	$f(x) = x(x^2 - 2) .$					f(x)	48	100	294	900	121	
5.		3	3								0	
	Find the value of $\int_{1}^{2} \frac{dx}{x}$ by Simpson's $\frac{1}{3}$ rd rule by taking h = 1/4.	-	-									
6.	What is the order of the error in the trapezoidal rule and Simpson's 1/3 rd rule?	3	1	13. (a)	The tabl	e give	s the v	elocity	ofam	noving	^v nartic ¹	14
7.	What is the disadvantage in using Taylor's series method?	4	2	100 (u)	the distance covered by the particle in 12 second							
8.	Find the value of k_1 to solve $y' = x^3 + y$, $y(0) = 2$, $h = 0.2$ by fourth order	4	3		at $t = 2$	$\frac{2}{0}$	nds. 2	4	6	8	2	1
	Runge - Kutta method.	-	-									
9.	Write the diagonal and standard five point formulae for solving the Laplace equation	5	2		v	4	6	16	34	6	50	5
). 10.	State the Bender-Schmidt formula for solving one dimensional heat equation.	5	-								(OR))
10.	zine me zenaer zeninat terman for sorring one annensional neut equation.	0										

2

Q. Code: 223868

$T - B (5 \times 14 = 70 \text{ Marks})$ Marks CO RBT LEVEL f equations by Gauss elimination method. (7) 1 3 y + 8z = 13, 5x - 2y + 7z = 20(7) 1 3 3y + 4z = 13,3x + 4y + 5z = 40(OR) find the inverse of the following (7) 3 1 ethod correct to three places of decimals (7) 3 1

8 from the following data			(14)	2	3		
	26	29					
	0.4384	0.4	848				
(OR)							
ed difference formula for the data.					(14)	2	3
	11	13					

202
3

oving particle at time t seconds. Find (14) 3 3 e in 12 seconds and also the acceleration

	10	12			
0	94	136			
(OR)					

(b) Evaluate
$$\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$$
 using Trapezoidal rule and Simpson's 1/3rd rule.

14. (a) Using the fourth order Runge- kutta method given
$$\frac{dy}{dx} = x + z$$
, (14) 4
 $\frac{dz}{dx} = x - y^2$, $y(0) = 2$, $z(0) = 1$, find $y(0.1)$, $z(0.1)$.

(OR)

Q. Code: 223868

(14) 3 3

4

3

3

(i) Using Adam's – Bashforth method find
$$y(1.4)$$
 given (7)
 $\frac{dy}{dx} = x^2(1+y)$ and $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$,
 $y(1.3) = 1.979$

(ii) Using Taylor series method compute the value of y at

$$x = 0.1$$
 and $x = 0.2$ given $\frac{dy}{dx} = 2y + 3e^x, y(0) = 0$
(7) 4 3

15. (a) Solve the Poisson equation
$$u_{xx} + u_{yy} = -81xy$$
, $0 < x < 1$, (14) 5 3
 $0 < y < 1$ given that $u(0, y) = 0$, $u(x, 0) = 0$,
 $u(1, y) = 100$, $u(x, 1) = 100$ and $h = \frac{1}{3}$.

(OR)

(b) Solve by Crank-Nicholson implicit finite difference method $u_{xx} = u_t$, (14) 5 3 0 < x < 2, t > 0, u(0,t) = u(2,t) = 0 and given that $u(x,0) = sin\frac{\pi x}{2}$, $0 \le x \le 2$ using $\Delta x = 0.5$ and $\Delta t = 0.25$ for 2 time steps.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	Find the numerically largest eigenvalue and the corresponding eigenvector of the following matrix using Rayleigh's power method	(10)	1	3
	$\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \end{bmatrix}$			
	3 2 4			

(b)

Q. Code: 223868