

- **CO 4** Students will acquire the knowledge of Interpolation and Approximation and Curve fitting.
- **CO 5** Students will be aware of solving partial differential equations numerically.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

1.	Form the partial differential equation by eliminating the constants a and b from	1	level 2
2.	$z = (x^{2} + a^{2})(y^{2} + b^{2}).$ Solve $(D^{2} - 2DD' + D'^{2})z = 0.$	1	3
3.	What is the constant a^2 in the wave equation $u_{tt} = a^2 u_{xx}$?	2	2
4.	The ends A and B of a rod <i>l</i> cm long have the temperature 40°C and 90°C until steady state prevails. Find the temperature in the rod at that state.	2	2
5.	What is the condition for convergence and order of convergence in Newton Raphson method?	3	1
6.	Using Gauss elimination method, solve $x + y = 2$, $2x + 3y = 5$.	3	3
7.	State on what basis an interpolation formula is to be chosen.	4	1
8.	Find the third divided differences with arguments 0, 1, 4, 5 of the function	4	2
	$f(x) = x^3 - x^2 + 3x + 8.$		
9.	State standard five point formula and diagonal five point formula.	5	1
10.	What is the condition of stability for the Bender-Schmidt method?	5	2

PART- B (5 x 14 = 70 Marks)

- 11. (a) (i) Form the partial differential equation by a function from $f(x^2 + y^2 + z^2, x + y + z)$
 - (ii) Solve $(4D^2 4DD' + D'^2)z = e^{3x-2y} + s$ (OR)
 - (b) (i) Find the singular integral of the p

$$z = px + qy + \left(\frac{q}{p} - p\right).$$
(ii) Solve $(3z - 4y)p + (4x - 2z)q = 2y - 3x$.

12. (a) A tightly stretched flexible string has its end time t = 0, the string is given a shape defined is a constant, and then released from rest. F point x of the string at anytime t > 0.

(**OR**)

(b) A rectangular plate with insulated surface is compared to its width that it may be consider introducing an appreciable error. If the temp

RBT

CO

$$y = 0$$
 is $u(x,0) = 8\sin\left(\frac{\pi x}{10}\right)$ for $0 < x < 10$ wh

and x = 10 as well as the short edge are kept a temperature function u(x, y).

13. (a) (i) Establish the formula to find the square

Raphson method. Hence evaluate $\frac{1}{23}$ corr

(ii) Using Gauss-Jordan method, find the invo

 $\begin{pmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{pmatrix}.$

(**O**R)

(b) (i) Solve x + y + 54z = 110, 27x + 6y - z = -Gauss-Seidel method

+ 70 Walks)			
	Marks	CO	RBT LEVEL
eliminating an arbitrary $f(x) = 0.$	(7)	1	3
$\sin x$.	(7)	1	3
partial differential equation	(7)	1	3
	(7)	1	3
ds fixed at $x = 0$ and $x = l$. At d by $f(x) = \lambda x(l-x)$, where k Find the displacement of any	(14)	2	3
is 10cm width and so long ered infinite in length without perature along are short edge	(14)	2	3
hile the two long edges $x = 0$			
at $0^{\circ}C$, find the steady state			
root of $\frac{1}{N}$, using Newton's –	(7)	3	3
rect to four decimal places.			
verse of	(7)	3	3
85, $6x + 15y + 2z = 72$ by	(7)	3	3

Q. Code:474147 3

3

(7)

(ii)	Find the numerically	largest eigen	value and the	corresponding eigen
------	----------------------	---------------	---------------	---------------------

vector of the matrix
$$\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

14. (a) (i) The population of a town in the census is as given in the data. (7) 4 3 Estimate the population in the year 1996. Year (x) 1961 1971 1991 1981 2001 Population(in 1000's) 46 66 81 93 101 (ii) Using Lagrange's formula, fit a polynomial to the data: (7) 4 3 1 3 4 $x \mid 0$ -12 0 6 12 У Also find *y* at x = 2. (OR) (b) Using Newton's divided difference formula, find the value of f(2), f(8)3 (14) 4 and f(15) from the data below: x 4 5 7 10 11 13 *f*(*x*) 48 100 294 900 1210 2028 **15. (a)** Solve $\nabla^2 u = 8x^2y^2$ for the square mesh given u = 0 on the 4 boundaries (14) 5 3 dividing the square into 16 sub-squares of length 1 unit. (OR) **(b)** Given $\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$, f(0,t) = f(5,t) = 0, $f(x,0) = x^2(25 - x^2)$, find f in the (14) 5 3 range taking h = 1 and upto 5 seconds. **PART-** C (1 x 10 = 10 Marks) (Q.No.16 is compulsory) Marks CO RBT LEVEL Find the cubic polynomial which takes the following values. 3 16. (10)4 0 2 3 |x|10 $f(x) \mid 1$ 2 1 Hence or otherwise evaluate f(4).

Q. Code:474147