per hour?

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth Semester

MA18453 – PROBABILITY AND QUEUEING THEORY

(Common to all CSE and INT)

(Regulation 2018A)

(Statistical tables are permitted)

MAX. MARKS: 100

RBT

LEVEL

2

2

2

2

2

1

2

2

CO

Q. Code: 635825

- **CO1** Describe commonly used univariate discrete and continuous probability distributions by formulating fundamental probability distribution and density functions, as well as functions of random variables.
- **CO 2** Develop skills in dealing with scenarios involving multiple random variables.

Reg. No.

- **CO 3** Express and characterize phenomenon which evolve with respect to time in a probabilistic manner.
- **CO 4** Acquire skills in analyzing queueing models.

TIME: 3 HOURS

CO 5 Develop skills in identifying best techniques to solve a specific problem.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

1.	A discrete random variable X has MGF $M_X(t) = \left(\frac{1}{4} + \frac{3}{4}e^t\right)^5$. Find Var(X).	1				
2.	If X is uniformly distributed over the interval [0,10], compute $P(2 < X < 9)$.	1				
3.	Find the value of A if the joint pdf of (X, Y) is given by $f(x, y) = Aye^{-x}$ where $x > 0$ and $0 < y < 2$.	2				
4.	If a random variable X has mean 4, variance 9 whereas another random variable Y has	2				
	mean 2, variance 5 and X, Y are independent, find Var (2X+Y).					
5.	What can you say about the inter-arrival time of a Poisson process with arrival rate?	3				
6.	State Chapman-Kolmogorov Theorem.	3				
7.	A TV repairman finds that the time spent on his jobs has an exponential distribution with					
	mean 30 minutes. If he repairs sets in the order in which they come in and if the arrival					
	of sets is approximately Poisson, with an average rate of 10 per 8-hour day, what is the					
	repairman's idle time each day?					
8.	What is the probability that a customer has to wait for more than 15 minutes to get his	4				
	service completed in an (M/M/1): (∞ /FIFO) queuing system if $\lambda = 6$ per hour and $\mu = 10$					

- 9. If the service expected nur
- 10. Define tande

(i) A 11. (a) dist

												Q. Cod	e: 63	5825
rvice ti	me of a	an (I	M/G/1) que	uing	model	l is a	consta	ant, h	ow w	ill you	find the	5	2
numbe andem	er of cus queue a	stom and g	ers in give a	the sy n exar	ystem nple.	?							5	2
]	PART	C-B(5 x 14	= 70	Marl	ks)				60	
												Marks	co	RBT
A disc distrib	rete ran ution:	dom	n varia	ıble X	has t	he fol	lowin	g proł	oabilit	У		(8)	1	3
	x	0	1	2	3	4	5	6	7	8				
	$p(\mathbf{x})$	2	32	59	79	92	11	13	15	17	-			
Find		u	Ju	Ju	/u	Ju	a	a	a	a	the			
value o	of 'a'. <i>I</i>	P(X)	< 3).	$P(X \ge$: 3) ar	nd <i>P((</i>) < X	< 3).	1	1				
The pr	obabili	ty of	f an in	finite	discre	ete dis	tribut	ion is	given	by		(6)	1	3
P(X =	(x) =	$\frac{1}{2^{x}}$,	x = 1	,2,	Find	the M	GF ai	nd me	an of	the				
distrib	ution.	-				(OP)							
Suppo	se that	the 1	numbe	er of i	niles	that a	car c	an rui	ı hefo	re its	hatterv	(6)	1	3
wears	out is e	xpoi	nentia	lly dis	stribut	ted wi	th an	avera	ge val	ue of	10,000	(0)	1	Ũ
that he	If a pers /she wi	son c ill be	desires e able	s to tal	ke a 50 mplet	000-n e the	nle tri trip w	p, wha vithou	at 1s th t havi	e pro ng to	bability replace			
the car	battery	/?	oturo	Та	1	aurad	in d	201000	Eabr	onhai	tono	(9)	1	2
The peak temperature T, as measured in degrees Fahrenheit, on a (8) particular day follows Normal Distribution with mean 85 and standard							(0)	1	3					
deviati	on 10.	Find	P(T >	>100)	, P(T)	< 60)	and I	P(70 ≤	$\leq T \leq 1$	00).				
ioint pd	f of (X	Y)	is giv	en bv								(14)	2	3
) F		, - , 	()	$\int k$	$xye^{-(x)}$	$x^2 + y^2$)	, <i>x</i> , <i>y</i>	≥ 0				()	-	•
		J ((x, y)	= {	0	0	therw	vise						
the val	ue of k, density	, bot fune	h the r	margi . Are l	nal de X and	ensity l Y ind	functi depen	ions, t dent?	ooth th	ne				
						(OR	.)							
X and Y	X and Y be two discrete random variables with joint p.m.f (14)						(14)	2	3					
Р	(X = x)	:,Y =	= y) =	$=\left\{\frac{x}{2}\right\}$	$\frac{+y}{21}$,	x	= 1,2	2,3 &	y = 1	,2				
			• •	(]	0,		C	otherv	vise					

(ii) The P(Xdist

- **(b)** (i) Sup wea mil tha the
 - (ii) The par dev

12. (a) The join

Find the condition

(b) Let X an

$$P(X = x, Y = y) = \begin{cases} \frac{x + y}{21}, & x \\ 0, & y \end{cases}$$

Find the correlation coefficient.

3

3

3

3

3

3

3

3

(14)

(14)

4

(7)

(7)

- (i) Verify whether the random process $\{X(t) = Y \sin(\omega t)\}$ where 13. (a) $Y \sim U[-1,1]$ is WSS or not.
 - (ii) A machine goes out of order whenever a component fails. The failure of this part follows Poisson process with a mean rate of 1 per week. Find the probability that 2 weeks have elapsed since last failure. If there are five spare parts of this component in an inventory and that the next supply is not due in 10 weeks, find the probability that the machine will not be out of order in the next 10 weeks.

(**OR**)

Find the nature of the states of the Markov chain with the TPM 3 3 **(b)** (i) (6)

$P = \begin{pmatrix} 0 & 1 & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 1 & 0 \end{pmatrix}$

- (ii) A man either drives a car or catches a train to go to office each day. He (8) never goes 2 days in a row by train, but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if a 6 appeared, find (i) the probability that he takes a train on the third day and (ii) the probability that he drives to work in the long run.
- In a railway marshalling yard, goods trains arrive at a rate of 30 trains per 14. (a) day. Assume that inter-arrival time and service time distribution follows exponential distribution with an average of 36 minutes. Using (M/M/1), calculate the following:
 - Service rate (i)
 - (ii) Utilization factor of the service facility
 - (iii) Expected queue size
 - Expected number of units waiting in the system (iv)
 - Expected waiting time in the system (v)
 - (vi) Expected waiting time in the queue
 - (vii) Probability that the queue size exceeds 10.

(**OR**)

- A supermarket has 2 girls attending to sales at the counters. If the service **(b)** time for each customer is exponential with mean 4 min. and if people arrive in Poisson fashion at the rate of 10 per hour,
 - What is the probability that a customer has to wait for service? (i)
 - What is the expected percentage of idle time for each girl? (ii)
 - If the customer has to wait in the queue, what is the expected (iii) length of his waiting time?

- 15. (a) An automatic car wash facility operates with only one bay. Cars arrive (14) according to Poisson distribution with a mean of 4 cars per hour and may wait in the facility's parking lot if the bay is busy. Find L_S , L_a , W_S , W_a , if the service time is
 - (i) normally distributed with mean 12 min and SD 3 min.
 - (ii) uniformly distributed between 8 and 12 minutes.

(**OR**)

- There are 2 clerks in a bank, one processing house loan applications and the (14) **(b)** other processing agricultural loan applications. While processing, they get doubts according to an exponential distribution each with a mean of $\frac{1}{2}$. To get clarifications, a clerk goes to the Deputy Manager with probability 3/4 and to the Senior Manager with probability 1/4. After completing the job with D.M., a clerk goes to S.M. with probability 1/3 and returns to his seat otherwise. Completing the job with S.M., a clerk always returns to his seat. If the D.M. clarifies the doubts and advises a clerk according to an exponential distribution with parameter 1 and the S.M. with parameter 3, find
 - (i) n_1, n_2, n_3 .
 - (ii) the probability that both the managers are idle.
 - the probability that at least one manager is idle. (iii)

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

The joint probability distribution of (X, Y) is g 16.

Y X	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find the following:

- The conditional distribution of X given Y. (i)
- $P(X \leq 2)$. (ii)
- (iii) $P(Y \leq 3).$
- P(X+Y < 4).(iv)
- Verify whether X and Y are independent or not. (\mathbf{v})

the steady state probabilities $P(n_1, n_2, n_3)$ for all possible values of

	Marks	СО	RBT
			LEVEL
given by	(10)	2	2

5

5 3