	Q. Coo	de:22	/160							
	Reg. No.									
	B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023 Fourth Semester									
	MA18454 – PROBABILITY AND RANDOM PROCESSES									
	(Electronics and Communication Engineering)									
ТΙ	(Regulation 2018 / Regulation 2018A)	DVC.	100							
	1 Reproduce and explain the basic concepts such as probability and random variable and	t ident	ify the							
C0 C0 C0 C0	 Acquire skills in handling situations involving more than one random variable. Acquire skills in handling situations involving more than one random variable. Study the characterize phenomena with respect to time in probabilistic manner. Apply the relationship within and between random processes. Apply the response of random inputs to linear time invariant systems. 									
	PART- A (10 x 2 = 20 Marks)									
	(Answer all Questions)	CO	RBT LEVE							
•	If $f(x) = \frac{x^2}{x}$, $-1 < x < 2$ is the pdf of the random variable X, then find $P(0 < x < 1)$.	1	2							
•	Find the expected value of the discrete random variable X with the probability mass	1	2							
	function $P(X = x) = \begin{cases} \frac{1}{3} & ;x = 0\\ \frac{2}{3} & ;x = 2 \end{cases}$									
•	The joint probability density function of bivariate random variable	2	2							
	(X, Y) is given by $f(x, y) = \begin{cases} 4xy, 0 < x < 1, 0 < y < 1 \\ 0 & 1 \end{cases}$. Find P (X + Y<1)									
	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the means of X and Y.	2	1							
•	Define wide sense stationary process.	3	1							
•	If the customers arrive at a bank according to a Poisson process with a mean rate of 2 per minute, find the probability that, during one-minute interval no customer arrives.									
•	Find the mean of the stationary process $\{X(t)\}$ whose autocorrelation function	4	3							
	$R(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$									
•	State any two properties of the power spectral density function.									
	Give an example of a linear system.									
' .										

												Marks	CO	RBT LEVEL
11. (a)	(i) A discrete r.v. X has the following probability distribution:										(7)	1	3	
		Values of X	0	1	2	3	4	5	6	7				
		P(x)	0	a	2a	2a	3a	a ²	2a ²	$7a^{2} + a$	_			
		Find (i) the v	alue o	f 'a'	' (ii) I	P(1.5<	X<4.	5 / X	(>2)	and (iii)	The			
	smallest value of n for which $P(X \le n) > \frac{1}{2}$													
	(ii) Find the MGF, mean and variance for a Poisson distribution.										(7)	1	3	
							(OR)						
(b)	(i) A continuous r.v. X has the p.d.f. $f(x) = \frac{K}{(1+x^2)}, -\infty \prec x \prec \infty$. Find k									(7)	1	3		
		and Distribution	on fun	ctio	n of X	Κ.								
	(ii)	If the probabil	lity tha	at ai	n app	licant	for a	drive	r's lic	ense wil	l pass the	(7)	1	3
		finally pass the	iy giv e test (i) oi	rial is	fourth	trial a	is the and (ii) in le	ss than f	our trials?			
			× ×					× ×	/					
12. (a)	The	joint probability	y mass	fun	ction	of (X	Y) is	given	by <i>p</i> ((x, y) = k	(2x+3y),	(14)	2	3
	x = 0, 1, 2, y = 1, 2, 5. Find K, the interginal distributions and Conditional probability distributions. Also find the probability distribution of X + Y.													
	prot					, me b								
							(OR)						
(b)	Find the correlation coefficient ρ_{xy} for the following joint density function										(14)	2	3	
	$f(x, y) = \int 2 - x - y, \ 0 \le x, y \le 1$													
	1(л,	$\left[0\right]$ else	where											
13. (a)	Sho	w that the pr oo	ress)	X(t)	whos	e nro	hahili	ity di	stribut	tion und	er certain	(14)	3	3
()	$\int \int \sqrt{n} dx$											()	-	-
						$\frac{1}{(1)}$	$\frac{(at)}{(at)^n}$	$\frac{1}{n+1}$, n	=1,2,					
	cone	ditions is given l	by $P\{$	X(t)=n	={(1	+ai			is not s	stationary.			
							l+at	, <i>n</i>	=0					
							(OR)						
(b)	If $\{Z, Z\}$	X(t)}is a Gaussi	an pro	ces	s with	μ(t)=	=10 ar	nd Ca	$v(t_1, t_2)$	$_{2}) = 16e^{-1}$	$ t_1-t_2 $, find	(14)	3	3

- 12. (a)
 - **(b)**
- 13. (a)

conditions is given by
$$P\{X(t) = n\} = \begin{cases} \frac{(at)^n}{(1+at)^n} \\ \frac{at}{1+at} \end{cases}$$

(b) lan proc the probability that $(i)X(10) \le 8$ and $(ii)|X(10) - X(6)| \le 4$

Q. Code:227160

PART- B (5 x 14 = 70 Marks)

14. (a) (i) If the power spectral density of a WSS process is given by (7) 4 3 $S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|); |\omega| \le a \\ 0; |\omega| > a \end{cases}$ find its autocorrelation function of the

process.

(ii) If {X(t)} is a WSS process with autocorrelation $R_{XX}(\tau)$ and if Y(t) = X(t+a) - X(t-a). Show that $R_{YY}(\tau) = 2R_{XX}(\tau) - R_{XX}(\tau+2a) - R_{XX}(\tau-2a)$. (OR)

(b) Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and (14) 4 3 $Y(t) = 2\cos(\omega t + \theta - \frac{\pi}{2})$, where θ is a random variable uniformly distributed in $(\theta, 2\pi)$. Prove that $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)}$.

15. (a) If
$$\{X(t)\}$$
 is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$ then prove (14) 5 3

the following:

(i) $R_{XY}(\tau) = R_{XX}(\tau)^* h(\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau)^* h(-\tau)$,

where* denotes the convolution.

(OR)

- (b) If $Y(t) = A\cos(\omega_0 t + \theta) + N(t)$, where A is a constant, θ is a random (14) 5 3 variable with uniform distribution in $(-\pi, \pi)$ and N(t) is a band-limited Gaussian white noise with a power spectral density $S_{NN}(\omega) = \begin{cases} \frac{N_0}{2}, & \text{for } |\omega - \omega_0| < \omega_B \\ 0, & \text{elsewhere} \end{cases}$. Find the power spectral density of
 - Y(t). Assume that N(t) and θ are independent.

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

3

16. The equations of two regression lines are 3x+12y=19 and 3y+9x=46. Find the (10) 2 mean of X and Y and the correlation coefficient.

Q. Code:227160

4