

(a) sample size, number of groups (b) mean, sam (c)expected frequency, obtained frequency

- Find the lower and upper control limits for \overline{X} and 9 size 4 and $\overline{\overline{X}} = 10.8$ and $\overline{\overline{R}} = 0.46$.
- If the average fraction defective of a large samp 10 the control limits. (Given that sub-group size is

PART- B (5x 14=

A discrete random variable X has t 11(a) (i) distribution:

-2 -1 0 x 1 2 3 p(x) = 0.1 k = 0.2 2k = 0.3 3k Find (i) the value of k (ii) P(X < 2) (iii) (iv) P(X > 1).

(ii) The probability of an infinite discre by $P(X = x) = \frac{1}{2^x}$, $x = 1, 2, \dots$ Find the M the distribution.

(OR)

In a certain city, the daily consumpt 11(b) (i) millions of kilowatt-hours can be treat

following Gamma distribution with para

If the power plant of this city has a dat kilowatt-hours, what is the probability th be adequate on any given day?

- Suppose that the number of miles that (ii) battery wears out is exponentially distributed of 10,000 miles. If a person desires to ta is the probability that he/she will be a without having to replace the car battery?
- 12(a) (i) Given the joint pdf of (X, Y) as f(x, y) =

the marginal and conditional probability X and Y. Are X and Y are independent?

(ii) Let X and Y be two discrete random

$$P(X = x, Y = y) = \begin{cases} \frac{x + y}{21}, x = 1, 2, 3, y\\ 0 & \text{otherwise} \end{cases}$$

Find the correlation coefficient between them. (**OR**)

O. Code:444510

mple standard deviation (d) MSE, MSC			
nd R chart when each sample	5	2	
ple of products is 0.1537, calo 2,000).	culate	5	2
=70 Marks)	Marks	СО	RBT
the following probability	(7)	1	LEVEL 3
) $P(-2 < X < 2)$ and			
rete distribution is given MGF, mean and variance of	(7) 1		3
R)			
otion of electric power in ated as a random variable rameters $\lambda = \frac{1}{2}$ and $\alpha = 3$.	(8)	1	3
aily capacity of 12 million that this power supply will			
t a car can run before its buted with an average value take a 5000-mile trip, what able to complete the trip	(6)	1	3
$= \begin{cases} 8xy; \ 0 < x < y < 1 \\ 0, \ otherwise \end{cases}$. Find density functions of	(7)	2	3
variables with joint p.m.f	(7)	2	3
<i>y</i> = 1,2			

O. Code:444510

3

3

3

3

3

3

3

2

2

3

3

3

3

(7)

(7)

12(b) (i) If the joint pdf of (X, Y) is given by

 $f_{XY}(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$, find the pdf of $U = \frac{X+Y}{2}$.

- (ii) The life time of a certain brand of an electric light may be considered as a random variable with mean 1200h and standard deviation 250h. Find the probability, using, CLT, that the average lifetime of 60 lights exceeds 1250h.
- 13(a) (i) Before an increase in excise duty on tea, 800 people out of a (7) sample of 1000 were consumers of tea. After an increase in excise duty, 800 people were consumers of tea in a sample of 1200 persons. Determine whether there is a significant decrease in the consumption of tea after an increase in excise duty. Test at 5% level of significance.
 - Test the significance of the difference between the means of the (ii) (7) samples drawn from 2 normal populations with the same standard deviation from the following data:

Sample	Size	Mean	Standard deviation
Sample I	100	61	4
Sample II	200	63	6
T_{1} () () ()	1 0	· · · ·	

Test at 1% level of significance.

- Tests made on the breaking strength of 10 pieces of a metal wire 13(b) (i) (7) gave the following results: 578, 572, 570, 568, 572, 570, 570, 572, 596 and 584 kg. Test if the mean breaking strength of the wire can be assumed as 577 kg.
 - The following table gives the number of aircraft accidents that (ii) (7) occurred during the various days of a week. Test whether the accidents are uniformly distributed over the week:

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of Accidents	15	19	13	12	16	15

14(a) Three varieties A,B, C of a crop are tested in a RBD with 4 replications. (14) The plot yields in units are as follows:

A6	C5	A8	B9
C8	A4	B6	C9
B7	B6	C10	A6

Test whether the yields differ significantly with respect to (a) blocks (b) treatments

OR

14(b) Analyse the following results of a Latin Square Design

	1	2	3	4
1	A(12)	D(20)	C(16)	B(10)
2	D(18)	A(14)	B(11)	C(14)
3	B(12)	C(15)	D(19)	A(13)
4	C(16)	B(11)	A(15)	D(10)

15(a)	Given below are the values of sample mean \overline{X} 10 samples, each of size 5. Draw the appropriate								
	and comment	t on the	state o	of contro	ol of th	e proces			
	Sample No.	1	2	3	4	5			
	Mean	43	49	37	44	45			
	Range	5	6	5	7	7			
	Sample No.	7	8	9	10				
	Mean	51	46	43	47				
	Range	8	6	4	6				

- OR
- 15(b) (i) In a factory producing spark plugs, the nu in the inspection of 15 lots of 100 each is

ii uite iiispeetiteii ei	10 1000	01 10	0 0000	10 81				
Sample No.	1	2	3	4	5	6	7	8
No. of defective	5	10	12	8	6	4	6	3
Sample No.	9	10	11	12	13	14	15	
No. of defective	4	5	4	7	9	3	4]
		.1	1	C	1 C	•	1	-

Draw the control chart for the number of defectives and comment on the state of control.

(ii) 15 tape – recorders were examined for quality control test. The number of defects in each tap - recorder is recorded below. Draw the appropriate control chart and comment on the state of control.

Unit No.	1	2	3	4	5	6	7	8
No. of defects	2	4	3	1	1	2	5	3
Unit No.	9	10	11	12	13	14	15	
No. of defects	6	7	3	1	4	2	1	

<u> PART- C (1x 10=10Marks)</u>

(Q.No.16 is co

Two random samples gave the following data: 16 Sample Size Mean Variance 1.2 Sample I 8 9.6 16.5 2.5 Sample II 11 Test whether the two samples have been drawn from the same normal

population.

4

(14) 3 **O. Code:444510**

3

3

5

5

(14)

and sample range R for te mean and range charts ess.

- 6 37
- 4

um	umber of defectives found				(7)	5	3	,
gi	ven b	elow:						
	5	6	7	8				

lsory	
	lsory)

Marks	CO	RBT LEVEL	
 (10)	3	3	

(7)

OR