Q. Code:381413

| Reg. No. |   |  |  |  |  |   |  |
|----------|---|--|--|--|--|---|--|
|          | l |  |  |  |  | l |  |

## **B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023**

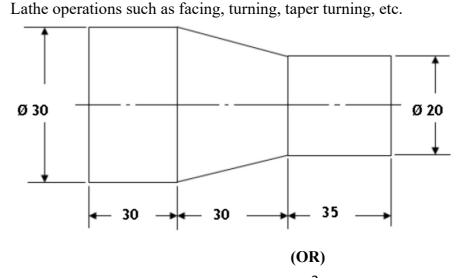
Sixth Semester

## **ME18014 – DIGITAL MANUFACTURING**

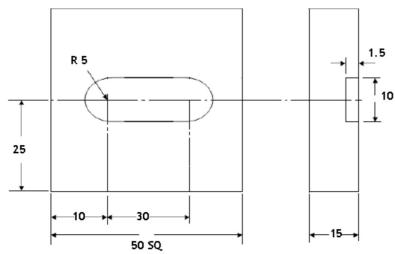
(Mechanical Engineering)
(Regulation 2018)

TIME: 3 HOURS MAX. MARKS: 100

- CO 1 The students will be able to learn basic concepts of NC, CNC machines and adaptive control system.
- CO 2 The students will be exposed to different Mechatronics and Mechanical elements in CNC machines.
- CO 3 The students will be able study different CNC measuring system and tooling.
- **CO 4** The students will be able to practice CNC programming.
- **CO 5** The students will be able to study the maintenance of different CNC machine elements.


## PART- A (10 x 2 = 20 Marks) (Answer all Questions)

**RBT**  $\mathbf{CO}$ **LEVEL** Differentiate closed loop system and open loop system. 2 List out any four electrical elements of a CNC system. 3 Name any two advantages of using a PLC rather than conventional relays, 2 3 timers, counters and other hard-wired control components. State the usage of sensor and actuator in digital manufacturing. 2 1 How does the modular fixture differ from unified fixture in CNC machine? 3 Differentiate resolver and encoder. 3 3 What do you mean by tool offset and tool compensation? 2 Differentiate ATC and APC. 2 What is meant by dry run in CNC? 5 1 State any four commonly encountered issues in the set-up and maintenance of 5 2 CNC machine.


PART- B (5 x 14 = 70 Marks)

Q. Code:381413

| 11(a) | (i)  | Identify a mechatronics system that is used in our day-to-day life                                                            | Marks (6)  | co<br>1 | RBT<br>LEVEL<br>4 |
|-------|------|-------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------------------|
|       | (ii) | and explain its application.  Analyse its mechanical, electrical, electronic elements in the functioning of the above system. | (8)        | 1       | 4                 |
|       |      | (OR)                                                                                                                          |            |         |                   |
| 11(b) | (i)  | Illustrate the three functions of an adaptive control system, being used in digital manufacturing perspective.                | (6)        | 1       | 4                 |
|       | (ii) | Analyse the evolution of CNC with respect to NC and DNC.                                                                      | (8)        | 1       | 4                 |
| 12(a) | (i)  | Explain the general configuration of a CNC system with a neat sketch                                                          | (7)        | 2       | 3                 |
|       | (ii) | Explain the hardware component that are used in machine tool for converting electrical energy into mechanical energy.         | (7)        | 2       | 3                 |
|       |      | (OR)                                                                                                                          |            |         |                   |
| 12(b) | (i)  | List out the five basic components of a PLC.                                                                                  | <b>(4)</b> | 2       | 3                 |
|       | (ii) | Explain the five PLC programming methods identified in the International Standard for Programmable Controllers (IEC 1131-3).  | (10)       | 2       | 3                 |
| 13(a) | (i)  | With a block diagram, explain the three stages of a digital measurement system.                                               | (6)        | 3       | 3                 |
|       | (ii) | Classify the CNC cutting tools on the basis of setting up of tools.                                                           | (8)        | 3       | 3                 |
|       |      | (OR)                                                                                                                          |            |         |                   |
| 13(b) | (i)  | What are the six basic principles of work holding devices?                                                                    | (6)        | 3       | 3                 |
|       | (ii) | Explain most commonly employed and simplest method of location, 3-2-1 principle of location.                                  | (8)        | 3       | 3                 |
| 14(a) |      | te a part programme using G – codes and M – codes to perform CNC                                                              | (14)       | 4       | 3                 |



14(b) Write a part programme using G-codes and M-codes to perform (14) 4 machining operations in CNC Milling machine.



15(a) Explain the procedure to be followed for installation and maintenance of (14) 5 CNC machine.

(OR)

15(b) Describe the technical specifications of a 5 axis CNC milling machine. (14) 5

## PART- C (1 x 10 = 10 Marks) (Q.No.16 is compulsory)

Marks CO RBT LEVEL

16 (i) Why the tool condition monitoring system is so important? (2) 3 4

(ii) Explain any four types of tool condition monitoring system. (8) 3 4

\*\*\*\*\*

3