											Q. Code: 473784					
	Reg. No.															
	B.E. / B.TECH. DEGRE		ZXA	MI	NA	TIO	I , I	ΛA	Y	202	3	1				
	In ME19301 Engin	ird S	ing	ster Th		odur	on		-							
	ME18301 – Eligii (Machan	ical	шg Еи		er III orin	ouyi	an	nes	•							
	(Песнин)	ıcu: Ilati	on 2	018	4)	8/										
	(Use of Approved Steam Tables, Psych	rome	etric	cha	rt an	d Da	a B	ool	k ma	ay b	e pe	rmit	tted)			
TIM	E: 3 HOURS									M	AX.	MA	RKS	: 100		
C O 1	Students are able to analyze various Energy Transferring / transforming equipment using First															
	law of thermodynamics															
CO 2	Students are able to analyze various Ene	ergy	Trai	nsfer	ring	/ tran	sfo	rmi	ng (equi	ipme	ent u	using	Second		
	law of thermodynamics															
C O 3	Students are able to analyze the performance of steam power plant cycle with the help of steam															
	table and charts															
C O 4	Students are able to obtain different thermodynamic relations and equations for ideal and real gases															
C O 5	Students will be able to analyze the vario	us P	sych	rom	etric	proce	ess a	nd	its a	appl	licat	ions	and a	lso able		
	to analyze the properties of Gas mixtures	5				1										
	PART- A	(10 x	x 2 =	= 20	Mar	·ks)										
	(Answ	er al	l Qu	estic	ons)											
													CO	RBT		
														LEVE		
H	low does open system differs from closed	syste	em?										1	2		

2	State zeroth	law of	thermody	vnamics
4 .	State Zerom		uncriniou	mannes.

- **3.** PMM II is impossible. Justify.
- 4. State principle of entropy increase.
- 5. What do you mean by pure substance?
- **6.** What is the value of dryness fraction for dry and superheated steam?
- 7. What is value of Joule Thomson coefficient for ideal gas?8. State the assumptions of ideal gas.
- **9.** Define relative humidity.
- **10.** State Dalton's law of partial pressure.

PART- B (5 x 14 = 70 Marks)

11. (a) Air at 1 bar, 25°C, initially occupying a cylinder volume of 0.015 m³, is compressed reversibly and adiabatically by a piston to a pressure of 7 bar.

Calculate: (a) The final temperature (b) The find one on the mass of air in the cylinder.

(OR

- (b) Applying first law of thermodynamics to an o flow energy equation. Also obtain the equatio exchanger.
- 12. (a) An irreversible heat engine with 60% efficient operating between 1000 K and 300 K. If it del the heat extracted from the high temperature low temperature reservoir.

(OR

- (b) (i) From the principle of Clausius theorem, mention the criteria for reversibility of a
 - (ii) By applying the principle of Clausius ine point function.
- 13. (a) A steam power plant uses steam at boiler press400°C at condenser pressure of 0.1bar. Find texhaust, cycle efficiency and steam rate.

1

2

1

1

2

2

1

1

1

RBT

LEVEL

3

1

2

2

3

3

4

4

5

5

1

Marks CO

(14)

(OR

- (b) In a single regenerative cycle, the steam enters and the exhaust pressure is 0.1bar. The cor contact type heater which operates at 5bar. Fir rate of the cycle. Neglect the pump work.
- 14. (a) (i) Derive Maxwell relations.(ii) Derive Tds relations interms of T & V at (OR)
 - (b) (i) Explain the physical significance of the
 - (ii) Draw a neat schematic of a generalis indicate its salient features.

inal volume (c) The work	Q. Code: 473784					
R) open system, derive the steady on for turbine and a heat	(14)	1	3			
ecy of the maximum possible is livers 3kW of work, determine reservoir and heat rejected to	5 (14) 2	2	3			
R) derive Clausius inequality and cycle.	l (8)	2	3			
equality, show that entropy is a	u (6)	2	3			
sure of 100bar and temperature the quality of steam at turbine	e (14)	3	3			
R) the turbine at 30bar and 400°C ndensate is heated in a direct nd the efficiency and the steam	c (14)	3	3			
nd T & P	(8) (6)	4 4	3 3			
<) compressibility factor Z	(6)	4	3			
sed compressibility chart and	l (8)	4	3			

Q. Code: 473784

15. (a) A sling psychrometer reads 30°C DBT and 25°C WBT. Find the humidity (14) 5 3 ratio, relative humidity, dew point temperature, specific volume, and enthalpy of air.

(OR)

(b) 2 kg of air at 30°C, 65% RH is mixed adiabatically with 5 kg of air at 20°C, (14) 5 3
10% RH, determine the specific humidity, relative humidity, and the dry bulb temperature of the mixture.

PART- C (1 x 10 = 10 Marks)

			Marks	CO	RBT LEVEL
16.	(i)	It is planned to construct a Carnot cycle by eliminating any one of the	(5)	2	4
		isothermal process. Justify the possibility of the cycle by applying the principle of second law of thermodynamics.			

(ii) Thermal efficiency of a Rankine cycle operating between a boiler (5) 3 4 temperature of 750 K and condenser temperatures of 300 K is 40 %.
Whether this cycle is possible? Justify through laws of thermodynamics.

Q. Code: 473784

4