

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023 Seventh Semester
 ME18701 - FINITE ELEMENT ANALYSIS (Regulation 2018/2018A)

TIME: 3 HOURS

COURSE
OUTCOMES
CO 1 The students will apply the principles involved in the finite element approach on mechanical systems
CO 2 The students will solve structural problems using 1D elements involving engineering applications
CO 3 The students will apply the concept of 2D plane elasticity and analyze the stresses in structural members
CO 4 The students will solve thermal and vibration problems using 1D elements
CO 5 The students will differentiate the shape functions and stiffness matrix for Isoperimetric elements

PART- A (10 x $2=20$ Marks)

(Answer all Questions)
2. List out the various weighted-residual methods.
3. How will you identify the stress developed in a truss element? $\quad \mathbf{2} \quad \mathbf{2}$
4. Write the stiffness matrix for a beam element of length "l". $\quad \mathbf{2} \quad \mathbf{2}$
$\begin{array}{llll}\text { 5. Define 'Plane stress' and 'Plane strain' with suitable example. } & \mathbf{3} & \mathbf{1}\end{array}$
6. Write down the stress-strain relationship matrix for plane stress condition. $\quad \mathbf{3} \quad \mathbf{2}$
7. Differentiate consistent mass matrix and lumped mass matrix. 4
8. Write the stiffness matrix for 1D heat conduction and convection. 4
9. What is meant by super parametric and sub parametric element? $\quad \mathbf{5} \quad \mathbf{1}$
10. What is the purpose of Gaussian quadrature? $\quad 5 \quad 2$

PART- B (5 x $14=70$ Marks)

11. (a) Consider an object with the differential equation for a problem as
$\frac{d^{2} y}{d x^{2}}+300 x^{2}=0, \quad 0 \leq x \leq 1$
With the boundary conditions $y(0)=0, y(1)=0$. Find the solution of the problem using trail function as $y=a_{1} x\left(1-x^{3}\right)$. Use any two methods and compare it based on the solution.

(OR)

(b) Discuss about the general procedure in FEM for an industrial application.. (14) $\mathbf{1}$
12. (a) Determine the nodal displacement, element stresses and support reactions of
(14) 2 the axially loaded bar as shown in Figure 1. Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{P}=30$ kN .

(b) Determine the nodal displacement for the given Truss. Take the cross- (14) 23 sectional area as $1000 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{GPa}$. Refer Figure 2

13. (a) The nodal co-ordinates of the triangular element are shown in Figure 3. At (14) 3 the interior point P , the x co-ordinate is 3.5 and $\mathrm{N}_{1}=0.4$, calculate $\mathrm{N}_{2}, \mathrm{~N}_{3}$ and the y coordinate at point P.

(OR)
(b) For the constant strain triangular element shown in Figure 4, determine (14) 3 strain-displacement matrix and Stress-strain matrix. Take $\mathrm{t}=20 \mathrm{~mm}$ and $\mathrm{E}=$ $2 \times I 0^{5} \mathrm{~N} / \mathrm{mm}^{2}$ 。

14. (a) For the longitudinal bar with length 2 L , modulus of elasticity E , mass density ρ, and cross-sectional area A, Determine the first two natural frequencies using consistent mass matrix. (OR)
(b) An aluminium alloy fin of 1 cm diameter, 6 cm long, protrudes from a wall which is maintained at $50^{\circ} \mathrm{C}$. The ambient air temperature is $10^{\circ} \mathrm{C}$. The thermal conductivity and heat transfer coefficient are $2 \mathrm{~W} / \mathrm{cm}^{\circ} \mathrm{C}$ and 0.2 $\mathrm{W} / \mathrm{cm}^{20} \mathrm{C}$ respectively. Determine the temperature distribution of fin. Use two finite element method.
15. (a) Evaluate the integral using Gaussian Quadrature.

$$
I=\int_{-1}^{1}\left(x^{7}+5 x^{3}+7 x+3\right) d x
$$

(OR)
(b) Derive the shape function for 9 - noded quadrilateral element

PART- C (1 x $10=10$ Marks)
(Q.No. 16 is compulsory)

CO $\begin{gathered}\text { RBT } \\ \text { LEVEL }\end{gathered}$
16. For the iso-parametric four-noded quadrilateral element with nodal points
$(1,1),(5,1),(6,6)$ and $(1,4)$, determine the Cartesian co- ordinates of point P which has local co-ordinates, $\varepsilon=0.5, \eta=0.5$

