Reg. No.

B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023

Second Semester

MR18201 – MARINE ENGINEERING THERMODYNAMICS

(*Marine Engineering*)

(Regulation 2018A)

(Use of Steam Tables and Mollier Diagram may be permitted)

TIME: 3 HOURS

- On completion of this course, students are expected to apply first law of thermodynamics to **CO**1 engineering applications
- On completion of this course, students are expected to apply second law of thermodynamics to **CO 2** engineering applications.
- **CO 3** On completion of this course, students are expected to understand properties of steam and apply it to Rankine cycle.
- **CO 4** On completion of this course, students are expected to understand air standard cycles and analyse them.
- On completion of this course, students are expected to understand thermodynamic relations and CO 5 combustion of fuels.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT
1.	What do you understand by the term "equilibrium process"?	1	LEVEL 2
2.	What is meant by intensive property? Give examples.	1	1
3.	Mention the processes involved in Carnot cycle.	2	2
4.	State the Kelvin plank statement of second law of thermodynamics.	2	1
5.	What are the advantages of reheat Rankine cycle?	3	2
6.	How quality of steam is determined?	3	2
7.	Differentiate between Otto and Diesel cycles.	4	2
8.	How heat addition takes place in dual cycle?	4	2
9.	What is the role of excess air in combustion of fuels?	5	1
10.	What is meant by higher calorific value?	5	1

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEI
11(a)	Air at 1.02 bar, 22 °C, initially occupying a cylinder volume of 0.015 m ³ ,	(14)	1	3
	is compressed reversibly and adiabatically by a piston to a pressure of 6.8			
	bar. Calculate the final temperature, final volume and the workdone.			

OR

11(b) Steam at 6.87 bar, 205 °C, enters in an insulated nozzle with a velocity of 3 (14) 1 50 m/s. It leaves at a pressure of 1.37 bar and at a velocity of 500 m/s. Determine the final enthalpy of steam.

MAX. MARKS: 100

Q. Code: 253745

12(a)	A domestic food refrigerator maintains a temperature of -12 °C. The ambient temperature is 35 °C. If heat leaks into the refrigerator at the	(14)	2	3
	continuous rate of 2 kJ/s, determine the least power necessary to pump this			
	heat out continuously.			
	OR		_	_
12(b)	Explain working of the Carnot cycle with neat sketches and property	(14)	2	3
	diagrams. Also state the assumptions made.			
13(a)	Analyze the Rankine cycle with appropriate diagrams and discuss the	(14)	3	4
	methods of improving efficiency of the cycle.			
	OR			
13(b)	A simple Rankine cycle works between pressures 28 bar and 0.06 bar. The	(14)	3	4
	initial condition of the steam is dry saturated. Estimate the cycle efficiency,			
	work ratio and specific steam consumption.			
14(a)	Explain working of the Diesel cycle with P-v and T-s diagrams and derive	(14)	4	3
	expressions for its efficiency with usual notations.			
	OR			
14(b)	Explain working of the Otto cycle with P-v and T-s diagrams and derive	(14)	4	3
	expressions for its efficiency with usual notations.			
			_	
15(a)	Derive Maxwell thermodynamic relations with usual notations.	(14)	5	3
	OR			
15(b)	Explain the construction and working of Orsat apparatus with neat sketches.	(14)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)			

		Marks	CO	RBT LEVEL
16	Analyze the Regenerative Rankine cycle and explain how it improves cycle	(10)	3	5
	efficiency.			