B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Third Semester

MR18301 - MARINE HYDRAULICS AND FLUID MACHINERY

(Marine Engineering)
(Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100
CO 1 Students can use their knowledge to select the suitable fluid pressure measuring instruments and they can use the knowledge of stability of ships in real time application.
CO 2 Students will have the Ability to analyze fluid flow problems and they can be able to use various flow measurements instruments in marine related application.
CO 3 Students can Apply fundamental principles and equations of fluid mechanics for the solution of practical marine engineering problems of water conveyance in pipes, pipe networks, and immerged bodies
CO 4 Students can apply fundamental knowledge of mathematics to modeling and dimensional analysis of fluid flow problems in marine engineering and they will be able to choose the appropriate pump for corresponding application.
CO 5 Students can Perform design calculations for turbine, and they will use their knowledge to select the suitable turbine for suitable requirements.

PART- A (10 x $2=20$ Marks $)$

(Answer all Questions)

1. How does the temperature affect the viscosity of gas molecules? $\quad \mathbf{1} \quad \mathbf{2}$
2. How does metacentric height affect the stability of a ship? $\quad \mathbf{1} \quad \mathbf{2}$
3. Differentiate between Eulerian and Lagrangian methods of representing fluid flow. $\mathbf{2} \mathbf{2}$
$\begin{array}{lll}\text { 4. List any three applications of the Bernoulli equation. } & \mathbf{2} & \mathbf{1}\end{array}$
$\begin{array}{llll}\text { 5. } & \text { Explain the role of friction in transferring the fluid through the pipe. } & \mathbf{3} & \mathbf{2}\end{array}$
$\begin{array}{lll}\text { 6. List out the different minor losses. } & \mathbf{3} & \mathbf{1}\end{array}$
4. Compare the volute and vortex casing of the centrifugal pump. 4
5. How does the cavitation affect the pump performance? 4
6. Compare impulse and reaction turbine. $\quad \mathbf{5} \quad \mathbf{2}$
$\begin{array}{lll}\text { 10. What is the significance of draft tube in reaction turbine? } & \mathbf{5} & 2\end{array}$

LEVEL
11. (a) (i) Explain any one temperature-measuring device with a neat sketch.
(ii) A differential manometer is connected at the two points A and B of two pipes as shown in the figure. Pipe A contains a liquid of specific gravity of 1.5 while Pipe B contains a liquid of specific gravity of 0.9 . The pressure at A and B are $1 \mathrm{kgf} / \mathrm{cm}^{2}$ and $1.8 \mathrm{kgf} / \mathrm{cm}^{2}$ respectively. Find the difference in the mercury level in the differential manometer.
(6) 13
(8) 13
(OR)
(b) Explain the stability of the submerged body and floating body with neat sketch.
12. (a) (i) A horizontal venturi meter with inlet and throat diameters of 20 cm and

10 cm respectively is used to measure the flow of oil of specific gravity of 0.8. The discharge of oil through the venturi meter is 60 litres/s. Find the reading of the oil-mercury differential manometer. Take $\mathrm{Cd}=0.98$
(ii) Compare

1. laminar and turbulent flow.
2. Steady and uniform flow.

(OR)

(b) Derive the expression for Bernoulli's equation and write down the
(14) 23 assumption to derive the expression

(Q.No. 16 is compulsory)
16. A solid cylinder of 15 cm diameter and 60 cm long, consists of two parts made (10) 1 of different materials. The first part at the base is 1.20 cm long and of specific gravity $=5.0$. The other parts of the cylinder is made of the material having specific gravity 0.6 . State, if it can float vertically in water.

