Q. Code: 163798

Reg. No.						
M.E./ M.TECH. DEGREE EXAMINATIONS, MAY 2023						
First Semester						
MS18101 – CONCEPTS IN ELECTRONICS ENGINEERING						
(Mechatronics)						
(Regulation 2018A)						
TIME: 3 HOURS	MAX. MARKS: 100					

- **CO 1** To understand the basics and working principles of electronic components and their applications.
- CO 2 To understand the concepts, working principles and key applications of linear integrated circuits.
- **CO 3** To develop a digital logic and apply it to solve real life problem.
- **CO 4** To provide a brief knowledge of measurements and measuring instruments related to Electronics Engineering.
- CO 5 To provide basic knowledge about the various sensors, actuators and controllers that are useful in Power Management.

PART- A (10 x 2 = 20 Marks) (Answer all Questions)

1	Distinguish hotwaan intrinsis and autrinsis somioon dustars	C0	RBT LEVEL 4
1.	Distinguish between intrinsic and extrinsic semiconductors.	1	4
2.	Distinguish between avalanche breakdown and Zener breakdown.	1	4
3.	Design an inverting amplifier with the gain as 2.	2	3
4.	List any 4 applications of operational amplifiers.	2	2
5.	Convert the given decimal number $(1100)_{10}$ to binary number and octal number.	3	3
6.	Simplify the given Boolean function $-Y = A(A+B)$.	3	3
7.	What is a rectifier? List the various types of rectifiers.	4	1
8.	What is a data logger? List some of its applications.	4	2
9.	Compare pulse width modulation and pulse position modulation.	5	4
10.	What is an actuator?	5	1

PART- B (5 x 13 = 65 Marks)

		Marks	CO	RBT LEVEL
11.(a)	Illustrate the operation of a half wave rectifier using the V-I characteristics	(13)	1	3
	of a PN junction diode.			

(OR)

		Q. Code: 163798		
(b)	Making use of the input and output characteristics of an NPN transistor in	(13)	1	3
	CE configuration, explain the operation as an amplifier.			
12.(a)	Demonstrate, how an Op-Amp can be used as an Adder, an Integrator and	(13)	2	3
	a Differentiator.			
	(OR)			
(b)	Illustrate the function of an operational amplifier as a square wave	(13)	2	3
	generator and obtain the relation for frequency of oscillation.			
13.(a)	Draw a logic circuit that represents the simplified Boolean Function with	(13)	3	4
	minimum literals for the following min terms.			
	$F(w, x, y, z) = \sum (1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14)$			
	(OR)			
(b)	Implement the basic logics functions NOT, AND and OR, using only	(13)	3	4
	NAND gates and only NOR gates.			
14.(a)	Explain in detail about the Regulated Power Supply.	(13)	4	2
	(OR)			
(b)	Explain in detail about the frequency Counters - Ripple Binary Coded	(13)	4	2
	Decimal Counter and Binary Synchronous Counter.			
15.(a)	Illustrate the use of Pulse Width Modulation and Pulse Position Modulation	(13)	5	3
	in power management applications.			
	(OR)			
(b)	Show the ways in which sensors and actuators are used in power	(13)	5	3
	management applications.			
	<u>PART- C (1 x 15 = 15 Marks)</u>			
		Marks	CO	RBT LEVEL
16.	(i) Design a non-inverting amplifier whose output is 10V for an input	(5)	2	5
	of 2V.	. ,		
	(ii) Design a 1 to 8 Demultiplexer using basic logic gates. What change	(10)	3	5
	has to be done to convert the demultiplexer into a 3 to 8 decoder?			