B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Sixth and Eighth Semesters

OM18001 -STATISTICAL METHODS FOR ENGINEERS

(Common to AI \& DS, CSE, CHE, CVE, EEE, ECE, and MEC)

(Regulation 2018 / Regulation 2018A)

Use of Normal, t , F , and Chi-square tables are permitted

TIME: 3 HOURS

MAX. MARKS: 100
CO 1 The students will have a fundamental knowledge of the concepts of descriptive statistics.
CO 2 The students will have a notion of sampling distributions and to analyse and interpret the data based on the large sample tests.
CO 3 Understand and characterize phenomena about variance and proportion and Goodness of fit.
CO 4 Students would be exposed to statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation.
CO 5 To enable the students to know the concepts of statistical Quality control theory and their applications on real time problems.

PART- A (10 x $2=20$ Marks $)$
(Answer all Questions)

1. Find the mode for the following distribution:

x	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
f	5	8	7	12	28	20	10	10

2. Find the missing frequency (p) for the following distribution whose mean is 50 .

x	10	30	50	70	90
f	17	p	32	24	19

3. A sample of 900 members has a mean 3.4 cm and standard deviation 2.61 cm . Is the $\mathbf{2} \boldsymbol{3}$ sample from a large population of mean 3.25 cm and standard deviation. 2.61 cm ?
4. Experience has shown that 20% of a manufactured product is of top quality. In one day's production of 400 articles, only 50 were found to be of top quality. Calculate the test statistic.
5. The mean life time of a sample of 25 fluorescent light bulbs produced by a company is computed to be 1570 hours with a S.D of 120 hours. The company claims that the average life of the bulbs produced by the company is 1600 hours. Compute the test statistic.
6. Write down the value of chi-square for a 2×2 contingency table with cell frequencies $\quad \mathbf{3} \quad \mathbf{2}$ a, b, c and d.
7. Write down the ANOVA table for one way classification.
8. Write the basic assumption in analysis of variance.
$4 \quad 1$
9. If the average fraction defective of a large sample of products is 0.1537 , calculate the control limits. (Given that sub-group size is 2,000)
10. What do you mean by chance variation?
(i) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

(ii) An incomplete frequency distribution is given as follows.

Variable	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	Total
Frequency	12	30	$?$	65	$?$	25	18	229

Given that the median value is 46 , determine the missing frequencies using the median formula.

(OR)

(b) (i) Calculate the median, lower quartile and the quartile coefficient of skewness from the following data:

x	$70-$	$80-$	$90-$	$100-$	$110-$	$120-$	$130-$	$140-$
80	90	100	110	120	130	140	150	
f	12	18	35	42	50	45	20	8

(ii) The first four moments of a distribution about the value $X=4$ of the variable are $1,4,10$ and 45 . Find $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \beta_{1}$ and β_{2}.
(i) The store keeper wanted to buy a large number of light bulbs of two brands A and B. He bought 100 bulbs from each brand and found by testing that brand A had mean life time of 1120 hours and standard deviation of 75 hours; brand B had mean lifetime of 1060 hours and standard deviation of 80 hours. Examine if the difference is significant.
(ii) In a random sample of 1000 people from city A, 400 are found to be consumers of wheat. Ina sample of 800 from city B, 400 are found to be consumers of wheat. Does this data give a significant difference between the two cities as far as the proportion of wheat consumers is concerned?

(OR)

(b) (i) Test the significance of the difference between the means of the samples, drawn from two normal populations with the same S.D. from the following data:

	Size	Mean	S.D
Sample 1	100	61	4
Sample 2	200	63	6

(ii) In a sample of 300 units of a manufactured product, 65 units were found to be defective and in another sample of 200 units, there were 35 defectives. Is there significant difference in the proportion of defectives in the samples at the 5% level of significance?
13.(a) (i) A random sam0ple of 10 boys had the following I.Q's 70, 120, 110,101, 88 $83,95,98,107,100$. Do these data support the assumption of a population mean I.Q of 100 ?
(ii) Theory predicts that the portion of beans in four groups A, B, C, D should be $9: 3: 3: 1$. In an experiment among 1600 beans the number in the four groups were $882,313,287$ and 118. Does the experiment support the theory?

(OR)

(b) Two random samples gave the following data.

Sample	Size	Mean	Variance
1	8	9.6	1.2
2	11	16.5	2.5

Can we conclude that the two samples have been drawn from the same normal population?
14.(a) The following data represent the number of units of a product produced by 3 different workers using 3 different types of machines.

Workers	Machines		
	A	B	C
X	8	32	20
Y	28	36	38
Z	6	28	14

Test (i) whether the mean productivity is the same for the different machine types, and (ii) whether the three workers differ with respect to mean productivity (OR)
(b) In a Latin square experiment noted below, the yields is quintals per acre on the paddy crop carried out for testing the effect of five fertilizers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ are given. Analyse the data for variations.

B25	A18	E27	D30	C27
A19	D31	C29	E26	B23
C28	B22	D33	A18	E27
E28	C26	A20	B25	D33
D32	E25	B23	C28	A20

(7) 23
15.(a) Given below are the values of sample mean \bar{X} and sample range R for 10
(14) 5 samples, each of size 5 . Draw the appropriate mean and range charts and comment on the state of control of the process.

Mean	43	49	37	44	45	37	51	46	43	47
Range	5	6	5	7	7	4	8	6	4	6

(OR)

(b) The data given below are the number of defectives in 10 samples of 100 items (14) $\mathbf{5}$ each. Construct a p-chart and an np-chart and comment on the results.

Sample Number	1	2	3	4	5	6	7	8	9	10
Number of defective	6	16	7	3	8	12	7	11	11	4

PART- C $(1 \times 10=10 \mathrm{Marks})$
 (Q.No. 16 is compulsory)

16. During one year a student received marks in various subjects as shown in the (10) 4 table below. Determine whether there is a significant difference between the student's grades at 0.01 level of significance.

Mathematics	72	80	83	75	
Science	81	74	77		
English	88	82	90	87	80
Economics	74	71	77	70	
