Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 First Semester
 PH18151 - ENGINEERING PHYSICS
 (Common to all branches)
 (Regulation 2018/2018A)

TIME:	HOURS MAX. MAR	MAX. MARKS: 100
course	statement	RB
outcomes		evel
CO 1	Interpret the thermal properties of the materials	2
CO2	Exhibit the ability to solve the problems pertaining to the behavior of sub-atomic particles using quantum mechanics.	2
CO 3	Learn to solve the issues related to defects in the buildings due to acoustic design.	3
CO 4	Develop an understanding about photonics and Fiber Optic communication system.	3
CO5	Classify and demonstrate the fundamentals of crystals and their defects.	2

PART- A ($10 \times 2=20$ Marks)

(Answer all Questions)

CO	RBT
LEVEL	

1. Why the specimen used to determine thermal conductivity of a bad conductor should have $\mathbf{1} \quad \mathbf{2}$ a large area and smaller thickness?
2. State Newton's law of cooling. $\quad \mathbf{1} \quad \mathbf{2}$
3. In Compton scattering, the incident photon have a wavelength 0.5 nm . Calculate the $\mathbf{2} \mathbf{3}$ wavelength of scattered radiation if they are viewed at an angle 45°.
4. Write down the one-dimensional Schrodinger time independent equation and write the $\mathbf{2} \quad \mathbf{2}$ same for a free particle.
5. List the factors affecting the good acoustics of building. $\quad \mathbf{3} \quad \mathbf{3}$
6. Why not ultrasonics be produced by passing high frequency alternating current through a $\quad \mathbf{3} \quad \mathbf{3}$ loud speaker.
7. Can a two level system be used for the production of Laser? Why?
8. Find the Numerical Aperture of an Optical fiber having a core refractive index of 1.554 and cladding refractive index of 1.50
9. In a cubic crystal, draw [110] and [210] planes.
10. Distinguish between edge dislocation and screw dislocation.

PART- B (5 x $14=70$ Marks)

11. (a) (i) Define coefficient of thermal conductivity and state its unit.
(ii) Describe Lee's disc method to find the co-efficient of thermal

Marks CO | RBT |
| :---: |
| LEVEL | conductivity of a bad conductor.

(2)	1	2
(12)	1	2

Q. Code:480830

(b) (i) When two different materials are connected in series and parallel, determine the quantity of heat conducted through the materials having same area of cross section and same thickness.
(ii) A glass sheet of area $1 \mathrm{~m}^{2}$ has a thickness of $2 \times 10-{ }^{3} \mathrm{~m}$. Its opposite faces are at temperature $25^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ respectively. If coefficient of thermal conductivity of glass is $2 \times 10^{-4} \mathrm{kcal} / \mathrm{m}^{\circ} \mathrm{Cs}$, find the quantity of heat conducted in one second.
12. (a) Derive Schrodinger's (i) Time independent and (ii) Time dependent equations for matter waves.

(OR)

(b) Derive an expression for the change in wavelength suffered by an x-ray photon when it collides with an electron.
13. (a) (i) Explain how ultrasonic waves can be produced by using Piezo electric crystal.
(ii) List any four applications of ultrasonic.
(OR)
(b) Derive Expressions for growth and decay of energy density inside a hall and hence deduce Sabine's formula for reverberation time of the hall.
14. (a) Explain what is meant by molecular Laser. Discuss the construction and working of molecular laser.

(OR)

(b) Define Numerical aperture and angle of acceptance. Derive an expression for Numerical Aperture and angle of acceptance of a fibre in terms of refractive indices of the core and cladding.
15. (a) (i) Show that in an ideal hexagonal closed packed structure the c / a ratio is 1.633 and its atomic packing factor equals to that of the face-centred cubic structure.
(ii) Copper has FCC structure and its lattice parameter is $3.6 \AA$. Find the atomic radius.

(OR)

(b) (i) What do you infer from crystal defects?
(ii) Describe in detail the point, line and surface defects.

PART- C ($1 \times 10=10$ Marks)
(Q.No. 16 is compulsory)
16. (i) Deduce the expression for the distance between two successive plane in a cubic lattice.
(ii) The distance between the Miller indices (110) is $2.86 \AA$. Calculate the lattice constant.

Marks	CO	RBT LEVEL
(8)	5	2
(2)	5	2

