Q. Code:480830

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

First Semester

PH18151 – ENGINEERING PHYSICS

(Common to all branches)

(Regulation 2018/2018A)

TIME: 3 HOURS MAX.		MARKS: 100		
COURSE OUTCOMES	STATEMENT	RBT LEVEL		
CO 1	Interpret the thermal properties of the materials	2		
CO 2	Exhibit the ability to solve the problems pertaining to the behavior of sub-atomic particles using quantum mechanics.	2		
CO 3	Learn to solve the issues related to defects in the buildings due to acoustic design.	3		
CO 4	Develop an understanding about photonics and Fiber Optic communication system.	3		
CO 5	Classify and demonstrate the fundamentals of crystals and their defects.	2		

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

				СО	RBT LEVEL	
1.	Why the specimen used to determine thermal conductivity of a bad conductor should have a large area and smaller thickness?					
2.	State Newton's law of cooling.					
3.	In Compton scattering, the incident photon have a wavelength 0.5 nm. Calculate the wavelength of scattered radiation if they are viewed at an angle 45°.					
4.	Write down the one-dimensional Schrodinger time independent equation and write the same for a free particle.					
5.	List the factors affecting the good acoustics of building.					
6.	Why not ultrasonics be produced by passing high frequency alternating current through a loud speaker.					
7.	Can a two level system be used for the production of Laser? Why?				2	
8.	Find the Numerical Aperture of an Optical fiber having a core refractive index of 1.55 and cladding refractive index of 1.50					
9.	In a cubic crystal, draw [110] and [210] planes.				2	
10.	Distingu	ish between edge dislocation and screw dislocation.		5	2	
		PART- B (5 x 14 = 70 Marks)				
			Marks	CO	RBT LEVEL	
11. (a) (i)	Define coefficient of thermal conductivity and state its unit.	(2)	1	2	
	(ii)	Describe Lee's disc method to find the co-efficient of thermal conductivity of a bad conductor.	(12)	1	2	

(OR)

			Q. Cod	le:48	0830
(b)	(i)	When two different materials are connected in series and parallel, determine the quantity of heat conducted through the materials having same area of cross section and same thickness.	(10)	1	2
	(ii)	A glass sheet of area 1 m ² has a thickness of $2x10^{-3}$ m. Its opposite faces are at temperature 25°C and 10°C respectively. If coefficient of thermal conductivity of glass is $2x10^{-4}$ kcal/m°Cs, find the quantity of heat conducted in one second.	(4)	1	2
12. (a)	Deri equa	we Schrodinger's (i) Time independent and (ii) Time dependent ations for matter waves.	(14)	2	3
		(OR)			
(b)	Deri phot	tive an expression for the change in wavelength suffered by an x-ray con when it collides with an electron.	(14)	2	3
13. (a)	(i)	Explain how ultrasonic waves can be produced by using Piezo electric crystal.	(10)	3	3
	(ii)	List any four applications of ultrasonic.	(4)	3	3
		(OR)			
(b)	Deri henc	we Expressions for growth and decay of energy density inside a hall and be deduce Sabine's formula for reverberation time of the hall.	(14)	3	3
14. (a)	Exp worl	lain what is meant by molecular Laser. Discuss the construction and king of molecular laser.	(14)	4	3
		(OR)			
(b)	Defi Num indio	ine Numerical aperture and angle of acceptance. Derive an expression for herical Aperture and angle of acceptance of a fibre in terms of refractive ces of the core and cladding.	(14)	4	3
15. (a)	(i)	Show that in an ideal hexagonal closed packed structure the c/a ratio is 1.633 and its atomic packing factor equals to that of the face-centred cubic structure.	(12)	5	2
	(ii)	Copper has FCC structure and its lattice parameter is 3.6Å. Find the atomic radius.	(2)	5	2
		(OR)			
(b)	(i)	What do you infer from crystal defects?	(2)	5	2
	(ii)	Describe in detail the point, line and surface defects.	(12)	5	2
		$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(2 \times 10^{-1} \text{ marks})}$			
		(Q.No.16 is compulsory)	Marks	со	RBT
1(Deduce the summeries for the literate later to the literate		_	LEVEL
16.	(1)	Deduce the expression for the distance between two successive plane in a cubic lattice.	(8)	5	2
	(ii)	The distance between the Miller indices (110) is 2.86Å. Calculate the lattice constant.	(2)	5	2
		* * * * * * * * *			