Q. Code:447776

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second Semester

PH18251 – ENGINEERING MATERIALS

(Automobile Engineering)

(Regulation 2018A)

Time: Three Hours

Maximum : 100 Marks

CO1 Understand the fundamentals of molten state of Metals and alloys and their properties.

CO2 Infer the concepts of phases and properties of metals /alloys hardness and their Heat treatment.

CO3 Comprehend the fundamentals of semiconductors and electron dependent properties.

CO4 Recall the knowledge on Dielectric, Magnetic and Superconducting materials.

CO5 Inter relate the knowledge on ceramics and new Engineering materials like Nano materials and Bio materials.

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT
1.	What is Hume Rothery rule?	1	2
2.	Apply lever rule in Binary phases.	1	3
3.	Why the materials are Nitrated?	2	2
4.	State Fick's law of diffusion.	2	2
5.	Distinguish between Intrinsic and Extrinsic Semiconductor.	3	2
6.	Give few applications of Hall Effect.	3	2
7.	Define polarisability. Give its unit.	4	2
8.	Calculate polarisability of an atom of radius 0.158 nm.	4	3
9.	Classify ceramic materials.	5	2
10.	What is Pseudo Elastic Effect?	5	2

PART B - (5 X14 = 70 Marks)

11.	(a)	(i)	Discuss Phase rule with suitable Examples.	(6)	1	3
		(ii)	Explain binary Isomorphous system and Phases present in it.	(8)	1	3

(OR)

Q. Code:447776

(b)	What is Peritectic phase diagram? Draw a typical equilibrium	(14)	1	3
	diagram for Eutectic type of system with limited solid solubility			
	and explain it important features.			

12.	(a)	(i)	Describe Fick's law of diffusion and types of diffusion.	(6)	2	3
		(ii)	Explain any three methods of hardening a metal.	(8)	2	3
			(OR)			
	(b)	Drav temj	w TTT diagram and explain the features of Iron at various peratures, time and transformations.	(14)	2	3
13.	(a)	Deri sem	ive an expression for intrinsic carrier concentration in a iconductor applying law of mass action.	(14)	3	3
	(b)	(i)	What is Hall Effect? With necessary theory derive an	(10)	3	3
	(0)	(1)	averagion for Holl of officient	(10)	5	5
		(**)	With a west discussed Discuss the superior stal determination		2	2
		(11)	of Hall coefficient	(4)	3	3
14.	(a)	(i)	What are the energies involved in the domain formation in	(8)	4	3
			ferromagnetic materials?			
		(ii)	Based on domain theory of ferromagnetism, explain Hysteresis curve.	(6)	4	3
		_	(OR)			_
	(b)	Deri	ive an expression for internal field in a dielectric material and	(14)	4	3
		dedı	ace Clausius-Mosotti relation.			
15.	(a)	Witl of N	h a neat diagram explain production, properties and applications Ietallic Alloys.	(14)	5	2
			(OR)			
	(b)	Wha List	at are shape memory alloys? Write down their characteristics. out any four applications of shape memory alloys.	(14)	5	2
			PART C - (1 X10 = 10 Marks)			
16.	Dis	cuss	with an experiment how resistance varies with temperature in a	(10)	3	3

intrinsic semiconductor.