Q. Code:797572

Reg. No.
Image: Control of the standard standar

- CO1 Students will understand the thermal and magnetic properties of materials
- **CO2** Students will gain the ability to distinguish conducting, semiconducting & super conducting materials.
- **CO3** Students will get the exposure of the dielectric properties and material and its applications materials in various fields.
- CO4 Students will analyze the requirements of advanced materials for different applications.

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT
1.	Compare Ferro and Ferri magnetic materials.	1	2
2.	Give some applications of Thermal expansion of solids.	1	2
3.	What is Lorentz number?	2	2
4.	Prove that superconductors are diamagnetic in nature.	2	3
5.	The intrinsic carrier concentration of Ge at 300K is $2.5*10^{19}$ m ⁻³ . Calculate its	3	3
	conductivity if electron and hole mobilities are $0.39m^2V^{\text{-1}}S^{\text{-1}}$ and $0.19m^2V^{\text{-1}}S^{\text{-1}}$		
	respectively.		
6.	Distinguish between N-type and p-type semiconductors.	3	2
7.	Define Polarisation Vector. Give its unit.	4	2
8.	What are different types of dielectric breakdown mechanism?	4	2
9.	Name any two biomaterials.	5	2
10.	What are nonlinear optical materials?	5	2

PART B - (5 X14 = 70 Marks)

11.	(a)	(i)	What are the energies involved in the domain formation?						(6)	1	3	
		(ii)	Based	on	domain	theory	of	ferromagnetism,	explain	(8)	1	3
			Hysteresis curve.									

Q. Code:797572

		(OR)								
	(b)	What is coefficient of thermal expansion? Explain any four applications of thermal expansion.	(14)	1	3					
12.	(a)	Derive an expression for electrical conductivity and Thermal Conductivity and hence Lorentz number.	(14)	2	3					
		(OR)	(0)	2	2					
	(b)	(i) Classify and compare superconductors based on magnetisation.	(8)	2	3					
		(ii) Explain Cryotron and Maglev.	(6)	2	3					
13.	(a)	Derive an expression for intrinsic carrier concentration in a	(14)	3	3					
		semiconductor applying law of mass action.								
		(OR)								
	(b)	(i) What is Hall Effect? With necessary theory derive an	(10)	3	3					
		expression for Hall co-efficient.								
		(ii) With a neat diagram, discuss the experimental determination of Hall coefficient.	(4)	3	3					
14.	(a)	Discuss various types of polarisation mechanism and hence derive Langevin's-Debye equation.	(14)	4	3					
		(OR)								
	(b)	Derive an expression for Internal field in a dielectric material and	(14)	4	3					
	(~)	deduce Clausius-Mosotti relation.	()	-	C					
15.	(a)	Give a detailed account on metallic glasses, their method of production, properties and applications.	(14)	5	2					
	(b)	(OR) What are shape memory alloys? Write down their characteristics.	(14)	5	2					
	(b)	List out any four applications of shape memory alloys.	(14)	3	L					
		PART C - (1 X10 = 10 Marks)								

16. What is Fermi Function? Explain how Fermi function varies with (10) 2 3 temperature.

2