Q. Code: 517072

CO

DDT

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023 Second Semester

CH22201 – INTRODUCTION TO CHEMICAL ENGINEERING

(Chemical Engineering)

(Regulation 2022)

TIME: 3 HOURS MAX. MARKS: 100 STATEMENT COURSE RBT OUTCOMES LEVEL Analyze the history and future prospects of Chemical Engineering. 3 **CO1 CO 2** Apply the basic Chemical Engineering Principles. 3 Construct the Concepts of Momentum Transfer. **CO 3** 3 **CO 4** Explore the Heat Transfer concepts and understand the working principle of Heat 3 transfer equipments. **CO 5** Explain the Mass Transfer operations and its role in Chemical process industries. 3

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		υ	LEVEL
1.	Indicate any two greatest achievements of Chemical Engineering.	1	2
2.	Cite few allied industries where chemical engineers can be employed.	1	2
3.	Write any four chemical engineering principles involved in your day to day life.	1	3
4.	Differentiate Unit Operations and Unit Processes with example.	1	3
5.	Show how the average molecular weight of a mixture is calculated?	2	3
6.	Write the unit of rate constant for a first order and second order reaction.	2	2
7.	Classify the thermodynamic properties of fluids with example.	2	2
8.	In a double effect evaporator plant, the second effect is maintained under vacuum of	2	3
	400 torr. Calculate the absolute pressure in kPa.		
9.	Differentiate compressible and incompressible fluid.	3	2
10.	Give the value of n in power law for Newtonian fluid with example.	3	3
11.	Write the difference between fan and blowers.	3	2
12.	Indicate the two popular pumps used in process industries.	3	2
13.	Indicate the three modes of heat transfer. Mention about the mechanism of conduction	4	2
14.	Draw neat sketch of a triple effect evaporator.	4	2
15.	Indicate the role of baffle in a Shell and Tube Heat Exchanger.	4	4
16.	Identify the type of flow arrangement gives maximum efficiency in a shell and tube heat exchanger and why?	4	2
17.	State Fick's law of diffusion and explain the terms.	5	2
18.	Indicate the significance of reflux ratio in distillation operation.	5	2
19.	Write about absorption and stripping factor.	5	2
20.	Illustrate Constant rate period in drying operation.	5	2

Q. Code: 517072

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT LEVEL
21. (a)	Write the historical overview about the evolution of Chemical Engineering.		1	4
	(UK)	(10)	1	4
(D)	Explain in detailed about the opportunity and future prospects of chemical Engineers in your point of view.	(10)	1	4
22. (a)	Pressure drop of a homogeneous fluid in a straight smooth pipe (ΔP) is a function of the pipe geometry (diameter d, and length l), the physical properties of the fluid (density ρ and viscosity μ) as well as its velocity v. Using dimensional analysis, find out the relationship between dimensionless groups	(10)	2	3
	(OR)			
(b)	(i) Compare the following with example: state and path functions	(5)	2	3
	(ii) Estimate the density of chlorine gas at temperature 503K(230°C) and 15.2MPa pressure using ideal gas law	(5)	2	3
23. (a)	(i) Explain the rheological behavior of fluids	(5)	3	3
	(ii) Explain the working principles of orifice meter with a neat diagram. (OR)	(5)	3	3
(b)	(i) Explain any five properties of fluids.	(6)	3	3
	(ii) Classify the types of stress with example.	(4)	3	3
24. (a)	Analyze the different types of heat exchangers available and explain any one with neat diagram.	(10)	4	3
	(OR)			
(b)	Indicate any four types of evaporators. Explain the features of a short tube evaporator with neat sketch	(10)	4	3
25. (a)	Explain any five industrial adsorbent and their applications.	(10)	5	3
	(OR)			
(b)	Explain in detail about different types of dryers used in industry.	(10)	5	3
	$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.No.26 \text{ is compulsory})}$	Marks	CO	RBT
26	Develop the expressions of any three dimensionless symptoms from their	(10)	2	
20.	physical significances and show these numbers are dimensionless.	(10)	2	3
