Q. Code: 487563

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second Semester

CS22202 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Computer Science and Engineering)

(Regulation 2022)

TIME: 3 HOURS MAX. MA		RKS: 100	
COURSE OUTCOMES	STATEMENT	RBT LEVEI	
CO 1	Students will be able to learn the different types of number systems and simplification of Boolean functions	4	
CO 2	Students will be able to understand various logic gates and their usage	2	
CO 3	Students will be able to study, analyze and design various combinational circuits and its implementation using VHDL	4	
CO 4	Students will be able to understand the different type of memory and their structures	2	
CO 5	Students will be able to study, analyze of RTL notation register operations in a clocked sequential circuit	4	

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Write the classification of binary codes.	1	2
2.	Represent a OR gate using NAND gate.	1	3
3.	What is the use of Don't care conditions?	1	2
4.	What is propagation delay?	1	2
5.	Draw 1:8 demultiplexer using two 1:4 Demultiplexer.	2	3
6.	What is magnitude comparator?	2	1
7.	How full adder is obtained from two half adders?	2	3
8.	Draw the circuit for 2-to-1 multiplexer.	2	2
9.	State the difference between latches and flipflops.	3	2
10.	Write any two applications of shift register.	3	2
11.	What is meant by edge triggered flip flops?	3	2
12.	Draw the excitation table of JK- flip flop.	3	2
13.	What are error detecting codes? Give examples.	4	2
14.	Draw the basic configuration of PROM.	4	2
15.	How many check bits are required for single bit error detection and correction?	4	3
16.	State the difference EPROM and EEPROM.	4	2
17.	List any two HDL operators and their symbols used in RTL design.	5	2
18.	Write a short note on register transfer level.	5	2
19.	Draw a block diagram for Sequential Binary Multiplier.	5	2
20.	Differentiate LOGICAL AND and BITWISE AND operators.	5	2

Q. Code: 487563

PART- B (5 x 10 = 50 Marks)

			Marks	CO	RBT LEVEI
21. (a)	(i)	Simplify the following Boolean expression to a minimum number of	(5)	1	4
		literals.			
		A'B' + A'C'D' + A'B'D + A'B'CD'.			
	(ii)	Convert the given expression in canonical SOP form $Y = AC+AB+BC$.	(5)	1	4
		(OR)			
(b)	State	e and Prove the Demorgan's theorem and Consensus theorem.	(10)	1	4
22. (a)	Des	ign a combinational circuit to convert binary to gray code.	(10)	2	3
		(OR)			
(b)	Witl	n neat diagram explain the 4-bit adder with carry look ahead.	(10)	2	3
23. (a)	Witl	h logic sketch explain the universal shift register as a storage device.	(10)	3	3
		(OR)			
(b)	Imp	lement JK flip flop using D flip flop.	(10)	3	3
24. (a)	Exp	lain in detail about the Programmable Logic Array, Programmable	(10)	4	4
	Prog	grammable Logic.			
		(OR)			
(b)	Exp	lain about error detection and correction using hamming codes.	(10)	4	2
25. (a)	Exp	lain in detail about the Algorithmic State Machine chart.	(10)	5	2
		(OR)			
(b)	Exp	lain how a hardware description language includes operators that	(10)	5	4
	corr	espond to the register transfer operations of a digital system?			
		PART- C (1 x 10 = 10 Marks)			
		(Q.No.26 is compulsory)			
	-		Marks	co	RBT LEVEI
26.	Des	ign a full subtractor and derive expression for difference and borrow.	(10)	2	5
	Rea	lize the circuit using gates.			
