						(Q. Code: 492789							
	Reg. No.													
	B.E. / B.TECH. DEGREE E	XAN	IINA	TI	ONS	5, M	AY	2023	3					
	First Se	mest	er											
	CY22151 – APPLI	ED (CHE	MI	STR	Y								
	(Common to AD,	CS, 1	EE, E	C	& <i>11</i>)								
	(Regulati	on 2()22)											
TIME: 3	HOURS								Μ	[AX	. M/	AR F	KS: 1	00
COURSE OUTCOMES	STA	TEMF	ENT										L	RBT EVEL
CO 1	Identify electrochemical cells, corrosion and fundamental aspects of batteries.								2					
CO 2	O 2 Interpret the photochemical reactions and make use of spectroscopic techniques.							2						
CO 3	CO 3 Realize the structures, properties and applications of nanoparticles.								2					
CO 4	Acquire the basic knowledge on chemical s among the students which are essential for t	enso he so	rs to ftwar	dev e e	velop ngin	o an eers	inte	rdisc	plir	ıary	appr	oac	h	2

CO 5 Develop theoretical principles of UV-visible and IR spectroscopy and separation techniques 3

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Note the overall reaction that takes place inside the lithium-ion battery.	1	3
2.	Assuming a metal electrode, write the Nernst equation.	1	3
3.	What are the characteristics of a good battery?	1	2
4.	Summarise the significant differences between electrolytic and galvanic cells.	1	2
5.	What type of chemical reaction is initiated by the absorption of light by particles of matter?	2	2
6.	Which are the two fundamental laws of photochemistry?	2	3
7.	List any two high quantum yield causes or explanations in your writing.	2	3
8.	Write about any two applications of photochemistry.	2	2
9.	Give a clarification of the surface plasmon resonance (SPR) concept.	3	2
10.	Address the fundamental distinction between bulk materials and nanoparticles.	3	3
11.	Identify the root cause of the argon gas used in the ion sputtering compartment.	3	3
12.	List the materials utilised for Cu on Cu via electrodeposition.	3	2
13.	List the electrodes in a three-electrode setup.	4	2
14.	Sketch a diagram of the chemical sensor.	4	2
15.	List the various kinds of sensors employed in everyday life.	4	4
16.	Construct a dropping mercury electrode (DME).	4	2
17.	Chemical analyses are affected by at least two types of errors. What are they?	5	3
18.	Sort the key instrumental approaches for chemical analysis.	5	2

10	T' 4 41 1 1	Q. Co	de: 4	92789
19.	List the various chromatography types.		5 -	3
20.	Mention any two applications of chromatography.		5	2
	PART- B (5 x 10 = 50 Marks)			
		Marks	CO	RBT LEVEL
21. (a	What does a mercury-mercurous chloride electrode in contact with a solution of potassium chloride (KCl) mean? How it is used in conjunction with a working electrode to measure the potential difference between two electrodes?	(10)	1	3
	(OR)			
(b	•) What is a lead-acid battery? Draw a diagram to represent the chemical process of charging and discharging.	(10)	1	3
22. (a) Define the Beer-Lambert's Law and derive an equation.	(10)	2	3
	(OR)			
(b) Write in detail about the estimation of iron by colorimetry.	(10)	2	3
23. (a	 Provide examples of how nanomaterials are used in any five different fields. 	(10)	3	2
	(OR)			
(b)) Identify the five important properties of nanomaterials.	(10)	3	2
24. (a	a) Write about electrochemical sensors, including their definition, functioning and uses.	(10)	4	3
	(OR)			
(b	•) What is a potentionmetric sensor? Write down the types that were used to determine the analytical concentration of an analyte.	(10)	4	3
25. (a	a) Explain the working procedure of UV-Vis spectroscopy with a neat block diagram and write their applications.	(10)	5	3
	(OR)			
(b	•) Explain the different modes of vibration while IR-range light is passed through water like a bend-structured molecule.	(10)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.26 is compulsory)	Marks	CO	RBT
) (1	Law any any angle individual any angle from the minter sector is A. D.	(10)	-	
20. F	and C compounds? And how to do primary spectral analysis on the separated	(10)	3	3

compounds.