

RBT

LEVEL

3

3

2

2

2

3

2

3

5

CO

1

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second Semester

EC22202 – CIRCUIT THEORY

(ELECTRONICS AND COMMUNICATION ENGINEERING)

(Regulation 2022)

TIME: 2	HOURS MAX. MARKS:	MAX. MARKS: 60	
COURSE	STATEMENT	RBT	
OUTCOMES		LEVEL	
CO 1	Apply suitable network theorems and analyze AC and DC circuits.	3	
CO 2	Infer the phenomenon of series and parallel resonance in electrical circuits and	2	
	understand the effect of magnetic coupling between windings		
CO 3	Analyze the transient response for any RC, RL and RLC circuits.	4	
CO 4	Evaluate the two port network parameters.	5	
CO 5	Sketch the various network topologies.	4	

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

1. Identify the current flowing through R3 resistor in the below Circuit.

- Construct a series RL circuit if the supply voltage is $v(t) = 10\cos(2t+600)V$, R= 2 Ω and 1 3 2. L=5H. Find current in the circuit? Infer the co efficient of coupling for the two coupled coils have a self-inductances 37.5 2 3. 2
- mH and 193 mH, with the mutual inductance of 63.75 mH.
- Construct an RLC series circuit has R=10ohm,L=2H.What value of capacitance will 3 4. make the circuit critically damped?
- Outline the frequency response of a single tuned circuits. 5.
- Summarize the significance of the ABCD parameters in interconnection of two-port 4 6. networks?
- Make use of the two port network, $Z11=100\Omega$, $Z21=120\Omega$, $Z12=120\Omega$, $Z22=50\Omega$. Find 4 3 7. Y parameters.
- Summarize the difference between a T-network and a π -network in two-port circuits? 8. Develop link current and tie set matrix 9. 5
- 10. Summarize the basic mesh analysis procedure.

Analyze the Thevenin's equivalent for the circ 11. (a) to terminals?

(**OR**)

Examine the current through 150hm resistor u **(b)**

12. (a) Build a series RLC circuit with $R=10\Omega$, L=10mH and $C=1\mu F$ has an applied (10) voltage of 200 V at resonance frequency .Calculate i)resonant frequency ii) current and voltage across the elements at resonance iii) Quality factor iv) Bandwidth of the circuit.

R=10Ω, L=10 mH, C=1µF, V=200V

(**OR**)

Build the expression for coefficient of coupling in terms of mutual and self- (10) **(b)** inductances of the coils

Q. Code:983098

	Marks	CO	RBT
			LEVEL
cuit shown in Fig. with respect	(10)	1	4

ising	superposition theorem	(10)	1	4
ω	1 1			

2 3

2 3

Q. Code:983098

Decide the circuit's current i (t) at t > 0. The switch was in closed position (10) 3 13. (a) 5

for a long time. It is opened at time t = 0

(OR)

Evaluate the following parameters, when Initially relaxed series RL circuit (10) **(b)** 3 5 with $R = 100 \Omega$ and L = 20 H has dc voltage of 200 V applied at time t = 0.

(a) the equation for current and voltages across different elements

(b) the current at time t = 0.5 s and 1.0 s

(c) the time at which the voltages across the resistor and inductor are equal.

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.14 is compulsory)

Make use of the circuit, draw the graph, one tree and its co-tree. 14.

Marks	CO	RBT
		LEVEL
(10)	5	3

Page **3** of **4**

Q. Code:983098