Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Second Semester

EE22151- BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to all branches except CHE, EEE, ECE)

(Regulation 2022)

TIME: 3 HOURS

COURSE
OUTCOMES
statement
MAX. MARKS: 100

OUTCOMES	
CO 1	RBT LEVEL

CO 2 Understand the construction and characteristics of different electrical machines.
2
CO 2 Understand the construction and characteristics of different electrical machines.
CO 4 Design basic digital circuits using Logic Gates and Flip-Flops.
CO 5 Analyze the operating principle and working of measuring instruments.
$\begin{array}{ll}\text { Design basic digital circusing Logic Gates and Flip-Flops. } & \mathbf{3}\end{array}$
PART- A ($20 \times 2=40$ Marks $)$
(Answer all Questions)

1. Two resistances with values 6Ω and 3Ω are connected in parallel. The combination is in $\mathbf{1}$ series with 8Ω. Find the equivalent resistance.
2. A sinusoidal current wave is given by $i=50 \sin (100 \pi t)$. Determine the root mean $\quad \mathbf{1} \quad \boldsymbol{2}$ square value.
3. What do you understand by balanced system? $\quad \mathbf{1} \quad \mathbf{2}$
4. Summarize the advantages of 3 phase circuits over single phase circuits. $\quad \mathbf{1} \quad \mathbf{2}$
$\begin{array}{lll}\text { 5. What are the materials used for brushes in dc machines? } & \mathbf{2} \quad 2\end{array}$
5. State the types of transformers. $\quad \mathbf{2} \quad \mathbf{2}$
6. List few applications of a transformer. $\quad \mathbf{2} \mathbf{2}$
$\begin{array}{llll}\text { 8. Give reason why single phase induction motors are not self-starting? } & \mathbf{2} & \mathbf{3}\end{array}$
7. Draw the structure with symbolic representation of NPN and PNP Transistor. $\mathbf{3} \quad \mathbf{2}$
8. List out the common diode applications. 3
9. Differentiate between PN junction diode and zener diode. 3
10. State the advantages of bridge rectifier. $\quad \mathbf{3} \quad \mathbf{2}$
11. Construct T Flip-Flop using JK flip-flop. 4
12. State the types of shift registers.
13. Convert $(0.513)_{10}$ to octal.
14. List the problems associated with the asynchronous counter.
15. Classify instruments based on their functions.
16. State the advantages of PMMC instruments.
17. Point out the torques required for the operation of an indicating instruments.
18. Why aluminum disc is used in induction type energy meter?

PART- B (5 x $10=50$ Marks)

21. (a) Find the Loop currents I_{1}, I_{2} and I_{3} of the given circuit using mesh current (10) $\quad \mathbf{1}$ method.

(OR)
(b) Find the node voltages using nodal analysis
(10) 13

22. (a) Discuss the principle and construction of D.C. Machine with neat diagram.
(10)

23
(b) Examine the working principle and construction of single -phase transformer (10) 2 with neat diagram.
23. (a) Explain the V - I characteristics of PN Junction diode with neat diagrams What is Static and Dynamic Resistance?

(OR)

(b) Illustrate the input and output characteristics of BJT in Common Emitter configuration.
24. (a) Obtain the expression for SUM and CARRY outputs of a full adder using kmap, and implement the same.

(OR)

(b) Construct a 4 bit Asynchronous counter
25. (a) Illustrate with suitable diagram the construction and working of moving coil type measuring instruments

(OR)

(b) Describe the construction of dynamo meter wattmeter in detail

PART- C (1 x $10=10$ Marks)

(Q.No. 26 is compulsory)
26. A coil of resistor of 4Ω and inductance of 3 mH and C of 800 mF are connected in series and applied across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine the following (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) phasor diagram (v) active power
(10) 3
(10) 3
(10) 4
(10) 4
(10) 5
(10) 5

Marks CO RBT LEVEL

