Q. Code: 478278
\square

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second Semester
EE22201 - ELECTRIC CIRCUIT ANALYSIS
(Electrical and Electronics Engineering)
(Regulation2022)

TIME: 3 HOURS

COURSE

Statemen

MAX. MARKS: 100

dTcomes

CO 1 Apply circuit laws to analyze steady-state parameters of given electricalcircuits. $\quad 4$
CO 2 Simplify DC and AC electrical circuits by applying suitable reduction methodsand network 3 theorems
CO 3 Analyze three phase balanced and unbalanced circuits to determine power andpower factor
CO 4 Analyze transients of electrical circuits and parameters of two-port network
CO 5 Realize resonance phenomenon and the effect of magnetic coupling in real timeapplications 5

PART- A(20x2=40Marks)
 (Answer all Questions)

1. Determine current through capacitor of the circuit.

2. An Electric heater is rated $750 \mathrm{~W}, 230 \mathrm{~V}$. Find the current drawn \& resistance of the $\mathbf{1} \mathbf{2}$ heating element.
3. State Kirchoff's current law. 1
4. Distinguish between mesh and super mesh. $\quad \mathbf{1} \quad \mathbf{2}$
5. Write down the expression of equivalent resistance for ' n '- number of equal value of $\mathbf{2} \quad \mathbf{2}$ resistors in parallel connection.
6. Mention the steps to solve the Norton's theorem. $\quad \mathbf{2} \quad \mathbf{2}$
7. Draw equivalent delta circuit $\quad \mathbf{2} \quad \mathbf{2}$

(

8. State maximum power transfer theorem.

21
9. Distinguish between power factor leading and power factor lagging.
10. Draw the phase sequence of a 3ϕ system.
11. A delta connected load has $(30-j 40) \Omega$ impedance per phase. Determine the phase $\mathbf{3} 2$ current if it is connected to a $415 \mathrm{~V}, 3 \phi, 50 \mathrm{~Hz}$ supply.
12. Write the power factor equation of 3ϕ system by two wattmeter method. 3
13. Outline the transient current response of RL series circuit. 4
14. A RLC series circuit has $R=50 \Omega$ and $L=10 \mathrm{mH}$. Find value of capacitance will make the $\mathbf{4} \mathbf{2}$ circuit critically damped case.
15. Define ABCD Parameters. 4
16. Draw the h parameter model. 4
17. Define the quality factor of the coil. $\quad \mathbf{5} \quad 2$
18. Compare low pass filter and high pass filter. $\quad \mathbf{5} \quad \mathbf{2}$
19. Write the frequency equation at resonant condition. $\quad \mathbf{5}$
20. Give the applications of tuned circuit.

PART- B (5x 10=50Marks)

(b) In the given network, shown in figure identify the voltage V_{2} such that (10) $\quad \mathbf{1} \quad 4$ the current in the $(1+\mathrm{j})$ ohm branch is zero

Determine the value of Z that will receive maximum power and also (10) 2 obtain the power delivered.

(b) Predict the Thevenin's equivalent circuit across the terminals AB for the circuit shown in figure below:

23. (a) A balanced delta connected 3ϕ load a fed from $3 \phi, 400 \mathrm{~V}$ supply. The line current is 20 A and total power absorbed by the load is 10 KW . Calculate a) the impedance in each branch b) the power factor c) total power consumed if some impedance are star connected.

(OR)

(b) A balanced 3ϕ star connected load is fed from $400 \mathrm{~V}, 3 \phi, 50 \mathrm{~Hz}$ supply The current per phase is 25 A (lagging) and total active power observed by load is 13.86 KW . Determine a) resistance and inductance of load per phase b) Total reactive power c) Total apparent power.
24. (a) For the circuit shown figure, determine the complete solution for the current, when switch ' S ' is closed at $t=0$. Applied voltage is $V(t)=100 \cos \left(1000 t+\frac{\pi}{2}\right)$.

(OR)
(b) Determine the Z-Parameters for the given network

25. (a) Compute Quality factor of the series RLC circuit with $R=10 \Omega$, $\mathrm{L}=40 \mathrm{mH}$ and $\mathrm{C}=1 \mu \mathrm{~F}$. Find bandwidth, resonant frequency and half power frequencies.

(OR)

(b) A coupled coils with self-inductance $\mathrm{L}_{1}=0.8 \mathrm{H}$ and $\mathrm{L}_{2}=0.2 \mathrm{H}$ have a coupling coefficient of 0.6 . coil-2 has 500 turns. If the current in coil- 1 is $\mathrm{i}_{1}(\mathrm{t})=10 \operatorname{Sin} 200 \mathrm{t}$, determine the voltage of coil- 2 and maximum flux set up by the coil- 1 .

PART-C (1x 10=10Marks)

(Q.No. 26 is compulsory)
26. A current $50 \angle-30^{\circ} \mathrm{A}$ is flowing through a circuit which consists of series connected elements, when excited by a source of $200 \angle 45^{\circ} \mathrm{V}, 50 \mathrm{~Hz}$. Analysis the elements of circuit and power. Also draw the phasor diagram. por
(Q.No. 26 is compulsory)
A current $50 \angle-30^{\circ} \mathrm{A}$ is flowing through a circuit which consists of series
connected elements, when excited by a source of $200 \angle 45^{\circ} \mathrm{V}, 50 \mathrm{~Hz}$.
Analysis the elements of circuit and power. Also draw the phasor
diagram.
(10) 4

