

Page 1 of 4

Q. Code:258840

B.E./ B.TECH.DEGREE EXAMINATIONS, MAY 2023

Second Semester

EE22251 – BASIC ELECTRICAL AND ELECTRONICS ENGINEERING FOR CHEMICAL ENGINEERS

(EEE & Chemical Engineering)

(Regulation2022)

MAX. MARKS: 100

CO

1

RBT

LEVEL

3

2

4

2

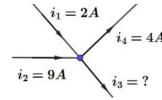
2

2

2

2

COURSE OUTCOMES CO 1	STATEMENT Apply basic electrical laws for the electrical circuits and understand sensors and	rbt level 3
CO 2	measurement principles. Analyze the characteristics of various semiconductor devices and develop circuits for an application.	4
CO 3 CO 4 CO 5	Analyze and select electrical machines for drive applications based on characteristics. Identify the structure and types of Electrical drives for specific applications. Apply control methods for Electrical Machine and Drives in chemical process industries	4 3 3

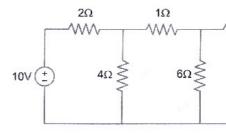

PART- A(20x2=40Marks)

(Answer all Questions)

1.	In a purely resistive electrical appliance, the emf source is 10 V. The current flowing	1	3
	through it is 1 A. If the wires are resistance-free, calculate the resistance of the		
	appliance.		

2. Applying KCL, find
$$i_3$$
.

TIME:3 HOURS



- A temperature indicator reads 189.8° C when the actual temperature is 195.5° C. Find the 1 3. 3 percentage error in the reading.
- Name the materials commonly used for RTDs. Which one has the most linear 2 4. 1 characteristics?
- What is an ideal diode? Draw its characteristics. 5.
- Obtain two transistor analogy of a SCR. 6.
- 7. Draw a half-wave rectifier circuit and show the input output waveforms.
- 8. What is meant by PWM control in dc chopper?

- What is the purpose of yoke in a DC machine? 9.
- Write the voltage equation of a DC motor. 10.
- What are the types of 3 phase induction motors? 11.
- What is the purpose of starters? List the type of sta 12.
- Draw the block diagram of the basic electrical driv 13.
- List any two factors influencing the choice of elec 14.
- What are the classes of duty? 15.
- List any two hazards in petrochemical industries w 16.
- What are the various conventional speed controls 17.
- Brief VVVF control and its advantages. 18.
- 19. Enumerate the various conventional speed control
- What do you understand by slip power recovery set 20.

PART- B (5x 10=50Marks)

Calculate current through 6Ω resistance using mo 21. (a)

(**OR**)

- A resistance of 100 Ω , an inductance of 0.2 H **(b)** connected in series across 230 V, 50 Hz a.c. drawn by the circuit, power factor of the circuit by the circuit. Draw the phasor diagram.
- Explain the static and switching characteristics of 22. (a) (**OR**)
 - Explain construction and working of Full w **(b)** rectification efficiency.
- Draw a neat sketch of a 3 point starter for DC 23. (a) the motor is protected against overload and loss

	3	2
	3	3
	3	2
tarting methods for ac motors.	3	2
ive.	4	2
ctrical drives.	4	3
	4	3
while operating electrical drives.	4	2
employed for DC motor.	5	2
	5	3
ls employed for AC motor	5	2
scheme?	5	4

	Marks	CO	RBT
			LEVEL
nesh analysis.	(10)	1	3

4Ω -www-+) 20V

I and capacitor of 150 μ F are	(10)	1	3
supply. Calculate the current			
t, its nature, power consumed			

of MOSFET.	(10)	2	2
vave rectifier and derive its	(10)	2	2
shunt motor and explain how of supply voltage.	(10)	3	4

Q. Code:258840

(OR)

(b)	'Single phase induction motors are not self-starting'Why? Explain the construction and working principle of single phase capacitor start induction motor.	(10)	3	4
24. (a)	Explain in detail about the various types of electric drives.	(10)	4	3
	(OR)			
(b)	Elaborate industrial hazards & safety measures to be followed.	(10)	4	3
25. (a)	Draw and explain slip power recovery scheme using static scherbius method.	(10)	5	3
	(OR)			
(b)	Explain with block diagram the computer control of DC and AC drives.	(10)	5	3
	PART- C(1x 10=10Marks)			
	(Q.No.26 is compulsory)			
		Marks	CO	RBT
				LEVEL
26.	In a pharmaceutical industry, a chemical process involves mixing of	(10)	2	4
	ingredients by a mixer driven by a DC motor. The drive should be designed			
	such that the machine operates in all four quadrants. Develop a drive control			

circuit and evaluate its functioning to fulfill the process needs.

Q. Code:258840