	Q. Code: 19	0660
	Reg. No.	
	B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023	
	First Semester	
	MA22151 – Applied Mathematics-I	
	(Common to all branches except Marine Engineering)	
TI	(Regulation 2022)	100
	VIE: 5 HOURS WAA. WARKS:	IUU DRT
оитсо СО 1	Solve eigen value problems in matrices.	LEVEL
CO 2	Apply the basic notion of calculus in Engineering problems and to tackle different	3
CO 3 CO 4 CO 5	Perform calculus for more than one variable and its applications in Engineering problems. Apply definite integrals for design of three-dimensional components. Evaluate multiple integrals in cartesian and polar coordinates.	3 3 3
	PART- A (20 x 2 = 40 Marks) (Answer all Questions) CO	RBT LEVEL
1.	Find the sum & product of the eigen values of the matrix $\begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}$ using the properties. 1	2
2.	Find the eigen value of $\begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$ corresponding to the eigen vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.	3
3.	The product of two eigen values of the matrix $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 16. Find the third eigen 1	3
	value.	
4.	Write down the quadratic form corresponding to the matrix $\begin{pmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{pmatrix}$ 1	2
5.	Find the radius of curvature of $y = e^x at$ the point where it crosses the y axis. 2	2
6.	Find the curvature of $x^2 + y^2 = 25 \text{ at } 3, -4$). 2	2
7.	Find the evolute of a curve whose centre of curvature at any point 't' is $2(3at^2 + 2a, -2at^3)$.	3
8.	Find the envelope of $y = mx + \frac{a}{m}$, m being the parameter. 2	2
9.	Find the first order and second order partial derivatives of $z = x^3 + y^3 - 3axy$. 3	2

10. If $u = e^x yz^2$ find du.

11. If u = f(x - y, y - z, z - x) find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.

12. If u, v, w are functions of x, y, z and $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$

13. Evaluate $\int_{-1}^{1} x^5 \cos x \, dx$

14. Evaluate: $\int_0^{\frac{\pi}{2}} \cos^8 x \, dx$.

Evaluate $\int x \log x \, dx$ 15.

Find mean value of the function $f(x) = x^2 + 2$ of 16.

Evaluate $\int_{2}^{a} \int_{2}^{b} \frac{dxdy}{xy}$ 17.

Find the value of $\int_0^{\pi} \int_0^{a \cos \theta} r \sin \theta \, dr d\theta$ 18.

Find the area of a circle of radius 'a' by double int 19.

20. Evaluate $\int_0^1 \int_0^2 \int_0^3 xyz dx dy dz$

PART- B (5 x 10 = 50 Marks)

21. (a) Find the eigen values and eigen vectors of the

(OR)

(b) Diagonalize the matrix
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix} b$$

22. (a) Find the radius of curvature of the curve $x^3 + y$

(OR)

(b) Find the evolute of the curve $x = a(\cos t + t \sin t)$

23. (a) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$. (10) 3 3

(OR)

A rectangular box open at top is to have a capacity of 108cu.ms. Find the (10) 3 **(b)** 3 dimensions of the box requiring least material for its construction.

Q. (Code: 190 3	660 2
	3	3
4, find the value of $\frac{\partial(2u, 2v, 2w)}{\partial(x, y, z)}$.	3	2
	4	2
	4	2
	4	2
over the interval [1,3].	4	2
	5	2
	5	2
tegration in polar coordinates.	5	2
	5	2

		,		М	arks	CO	RBT LEVEL
matrix	$\begin{pmatrix} 2\\1\\1 \end{pmatrix}$	-2 1 3	$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$.	(10)	1	3
)							

by orthogonal transformation. (10) 1 3

³=3axy at the point
$$\left(\frac{3a}{2}, \frac{3a}{2}\right)$$
 (10) 2 3

$$(in t), y = a(sin t - t cos t).$$
 (10) 2 3

Q. Code: 190660

3

24. (a) Find the volume of the solid generated by revolving the region between the y- (10) 3 4 axis and the curve $x = \frac{2}{y}, 1 \le y \le 4$ about the y-axis. Also draw the region and solid of revolution.

(OR)

Find the volume of the solid formed by revolving the region bounded by the (10) **(b)** 4 3 graphs of $y = x^2 + 1$, y = 0, x = 0 and x = 1 about y-axis. Also draw the region and solid of revolution.

25. (a) Change the order of integration and hence evaluate
$$\int_0^a \int_y^a \frac{x}{\sqrt{x^2 + y^2}} dx dy$$
. (10) 5

(OR)

- Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 03 **(b)** (10) 5
 - $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$

PART- C (1 x 10 = 10 Marks)

(Q.No.26 is compulsory)

		Marks	CO	RBT	
				LEVEL	
26.	Verify Cayley –Hamilton Theorem for the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find A ⁴ .	(10)	1	3	

Q. Code: 190660