

First Semester

MA22152 – APPLIED MATHEMATICS I FOR MARINE ENGINEERS

(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

	RSE STATEMENT OMES		RBT LEVEL	
CO 1	1 Apply the basic concepts of analytical geometry in marine engineering problems.			
CO 2	Apply the basic notion of calculus to engineering problems and to tackle different geometries.			
CO 3	CO 3 Perform calculus for more than one variable and its applications in engineering pro-		3	
04	revolution.	as 01	5	
CO 5 Apply integration to compute multiple integrals, area, moment of inertia, integra polar coordinates, in addition to change of order.		ıls in	3	
	PART- A (20 x 2 = 40 Marks) (Answer all Questions)			
		СО	RBT LEVEL	
1.	Find the centre and radius of the sphere $x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$	1	2	
2.	Find the equation of the cone with vertex at the origin and passing through the curve	1	2	
	$x^2 + y^2 = 9, z = 3.$			
3.	Find the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 - x + 5y - 3z = 0$ at	1	2	
	(0,0,3).			
4.	Find the equation of the sphere on the join of $(1,-1,-1)$ and $(-1, 2, 3)$ as diameter.	1	2	
5.	Find the Taylor's series expansion of $f(x) = \cos x$ about $x = \frac{\pi}{2}$	2	2	
6.	If $f(x) = x^3 - 3x + 2$, find $f'(3)$.	2	2	
7.	Differentiate $8x^8 + 2tan x + e^{-3x}$	2	2	
8.	Find the n th derivative of $sin(5x + 3)$	2	2	
9.	If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.	3	2	
10.	Find $\frac{dy}{dx}$ when $x^2 + y^2 = 2axy$.	3	2	
11.	Find the first order partial derivatives of $u = e^{2x}y^2z^3$.	3	2	
12.	If $x^y + y^x = c$ find $\frac{dy}{dx}$.	3	2	
13.	Find the average value of $f(x) = x^3$ in the interval [1, 2]	4	2	
14.	An electric current <i>i</i> is given by the expression $i = L \cos \theta$ where L is constant. Find RMS value of current over the interval $0 \le \theta \le 2\pi$	4	2	
	$\sum_{n=1}^{\infty} \int (\log x)^2 dx$,	•	
15.	Evaluate $\int \frac{dx}{dx} dx$	4	2	
16.	Evaluate $\int x^2 e^{2x} dx$	4	2	
17.	Change the order of integration for $\int_0^u \int_0^y f(x, y) dy dx$	5	2	

Q. Code: 322435

18.	Evaluate $\int_0^2 \int_0^3 e^{3x} dy dx$	C	5	2				
19.	Sketch the region of integration for $\int_0^\infty \int_0^\infty f(x, y) dy dx$		5	2				
20.	Evaluate $\int_0^a \int_0^b \int_0^c (xyz) dz dy dx$		5	2				
$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} \cdot \mathbf{D} \left(5 \times 10 - 50 \cdot \mathbf{M}_{0} \times 10 \right)$								
	$\mathbf{F}\mathbf{A}\mathbf{K}\mathbf{I}^{-}\mathbf{D}\left(\mathbf{S}\mathbf{X}\mathbf{I}\mathbf{U}-\mathbf{S}\mathbf{U}\right)$ what $\mathbf{K}\mathbf{S}$	Marks	CO	RBT				
21 (a)	Find the equation of the right circular cone whose vertex is at the origin	(10)	1	LEVEL 3				
21. (a)	whose axis is the line $\frac{x}{x} = \frac{y}{z} = \frac{z}{z}$ and which has semi-vertical angle of 30°	(10)	1	5				
	whose axis is the line $\frac{1}{1} = \frac{2}{2} = \frac{3}{3}$, and which has seem vertical angle of 50.							
(b)	Find the equation of the sphere through the circle	(10)	1	3				
	$x^{2} + y^{2} + z^{2} + 2x + 3y + 6 = 0; x - 2y + 4z - 9 = 0$ and the centre of the sphere							
	$x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 = 0$							
22. (a)	If $y = \sin(\sin x)$ then prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx^2} + y \cos^2 x = 0$	(10)	2	3				
(u)	$dx^2 + tan x + y \cos x = 0$ $dx^2 - dx$	(10)	-	C				
a	(OR)	(10)	•	2				
(b)	If $y = e^{a \sin^2 x}$ then prove that	(10)	2	3				
	$(1 - x^2)y_{n+2} - 2(n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$							
23. (a)	If z is a function of x and y and u and v are other two variables, such that	(10)	3	3				
	u = lx + my, $v = ly - mx$. Show that	()						
	$\frac{\partial^2 z}{\partial z} + \frac{\partial^2 z}{\partial z} - (l^2 + m^2) \left(\frac{\partial^2 z}{\partial z} + \frac{\partial^2 z}{\partial z} \right)$							
	$\partial x^2 + \partial y^2 = (t + m) (\partial u^2 + \partial v^2)$							
a)	(OR)	(10)	2	2				
(b)	Find the extreme values of the function $f(x, y) = x^3 \pm y^3 = 3x \pm 12y \pm 20$	(10)	3	3				
	f(x,y) = x + y + 3x + 12y + 20							
24. (a)	Find the first and second moment of area under $y = 1 + x + x^2$ from $x = 0$ to	(10)	4	3				
	x = 2 about $y - axis$.							
	(OR)							
(b)	Find the centroid of the region bounded by $y = x^2$ and $y = \sqrt{x}$.	(10)	4	3				
35 ()		(10)	-	2				
25. (a)	Find the area of the circle $x^2 + y^2 = a^2$	(10)	5	3				
(L)	$\sum_{x \to 0} \int_{-\infty}^{1} (\sqrt{1-x^2}) \sqrt{1-x^2-y^2} = 1$	(10)	_	2				
(D)	Evaluate $\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx$	(10)	5	3				
	PART- C (1 x 10 = 10 Marks)							
	(Q.No.26 is compulsory)	. .	~~					
		Marks	CO	KBT LEVEL				
26	Find the maximum value of $x^m y^n z^p$ subject to the condition $x + y + z = a$.	(10)	3	3				