Page 1 of 4

Q. Code:261842

		Reg. No.															
--	--	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2023

Second Semester

MA22251 – APPLIED MATHEMATICS-II

(Common to all branches except Marine)

(Regulation2022)

TIME:3 HOURS MAX. MAI		100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems.	3
CO 2	Solve first order linear, homogeneous differential equations and use series solution method to solve second order differential equations	3
CO 3	Determine the methods to solve differential equations using Laplace transforms and Inverse Laplace transforms.	3
CO 4	Explain Analytic functions and Categorize transformations	3
CO 5	Perform Complex integration to evaluate real definite integrals using Cauchy integral theorem and Cauchy's residue theorem.	3

PART- A(20x2=40Marks) (Answer all Questions)

		CO	RBT LEVEL
1.	If $\phi = 2x^2 - 3y^2 + 4z^2$ then find $Curl(grad \phi)$.	1	2
2.	Find a unit normal vector to the surface $2x^2 + y^2 + 2z = 3$ at $(2,1,-3)$.	1	2
3.	Find the constant 'a' so that $\vec{F} = (axy - z^3)\vec{i} + (a-2)x^2\vec{j} + (1-a)xz^2\vec{k}$ is conservative vector field.	1	3
4.	Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 2x\vec{i} + 3y\vec{j} + 4z\vec{k}$ and S is unit sphere.	1	3
5.	Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$.	2	2
6.	Solve $(D^3 + 4D^2 + 4D)y = 0$	2	2
7.	Solve for x and y: $\frac{dy}{dt} = x$; $\frac{dx}{dt} = y$	2	2
8.	Find the particular integral of $(D^2 + 9)y = \sin 3x$	2	2
9.	If $L(f(t)) = \frac{s+2}{s^2+4}$, find $\int_0^\infty f(t)dt$	3	2
10.	Find $L^{-1}\left(\frac{1}{(s+1)^4}\right)$	3	2
11.	Find $L [\sin(2t)\sin(3t)]$	3	2

12. Find
$$L\left[\frac{1-e^t}{t}\right]$$

- Check whether the function $v = x^3 3xy^2 + 3x^2 + 3x^2 3xy^2 + 3x^2 + 3x$ 13.
- 14. Find the invariant points of the transformation w =
- Check whether the function $f(z) = \frac{(x-iy)}{x^2 + y^2}$ is ana 15.
- Find the image of 2x + y 3 = 0 under the transformed of 2x + y 3 = 0 under the transformed of the t 16.
- Using Cauchy Integral formula evaluate $\int_{C} \frac{\cos(\pi z^2)}{z-2}$ 17.

18. Evaluate
$$\int_C \frac{z^2}{(z-\pi)} dz$$
 where C is $|z| = 2$.

- Discuss the nature of singularity of $\frac{z \sin z}{z^2}$ 19.
- Find the residue of $f(z) = z^2 e^{1/z}$ at its singularity. 20.

PART- B (5x 10=50Marks)

		Marks	CO	RBT LEVEL
21. (a)	(i) Find the directional derivative of $xy^2 + yz^3$ at (2,-1, 1) in the direction of the normal to the surface $x \log z - y^2 + 4 = 0$ at (-1,2,1).	(6)	1	3
	(ii) Find the scalar potential of conservative force field $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$.	(4)	1	3
	(OR)			
(b)	Verify Stoke's theorem for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - zx\vec{k}$ where S is the	(10)	1	3
	open surface of the rectangular parellopiped formed by the planes			
	x = 0, x = 2, y = 0, y = 2 and $z = 2$ above the XY-plane.			
22. (a)	Solve the following differential equations by the method of variation	(10)	2	3
	parameter $(D^2 + 16)y = \cos ec(4x)$			
	(OR)			
(b)	Solve $((2x+3)^2 D^2 - 2(2x+3)D - 12)y = 6x$	(10)	2	3
22 (a)	Find the London transform of the nextensilar marian	(10)	7	2
23. (a)	Find the Laplace transform of the rectangular-wave function $(t, 0, c, t, c, a)$	(10)	3	3
	$f(t) = \begin{cases} t, 0 \le t \le a \\ 2a - t, a \le t \le 2a \end{cases} \text{ and } f(t + 2a) = f(t)$			
	(OR)			
(b)	Solve the differential equation $y''+5y'+6y=e^{-t}$, $y(0)=0$, $y'(0)=0$ using	(10)	3	3

- 23.

Laplace transform.

	3	2
$3y^2 + 1$ is harmonic or not.	4	2
$=\frac{z-1}{z+1}.$	4	2
alytic or not.	4	2
prmation $w = z + 2i$.	4	2
$\frac{dz}{dz}$ where C is $ z-1 = 2$.	5	2
	5	2
	5	2
	5	2

24. (a) Find the analytic function
$$f(z)=u+iv$$
 where $u+v = \frac{Sin2x}{Cosh2y-Cos2x}$ (10) 4 3
(OR)
(b) Find the bilinear transformation which maps the points $z = 0, -1, i$ onto (10) 4 3
 $w=i, 0, \infty$. Also find the image of $|z| < 1$.
25. (a) Find the Laurent's series expansion of $f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$ in the region (10) 5 3
(i) $|z| < 2$ (ii) $2 < |z| < 3$ (iii) $|z| > 3$ (OR)
(b) Using contour integration evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 - 3\cos\theta} d\theta$ (10) 5 3
 $\frac{PART - C(1x 10 = 10Marks)}{(Q.No.26 is compulsory)}$ Marks CO RBT LEVEL
26. Determine the residue at each pole of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$. (10) 5 3

Hence evaluate $\int_{C} f(z) dz$ where C is $(i) |z| = \frac{3}{2} (ii) |z| = 3$

Q. Code:261842