Q. Code:659750

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2023

First Semester

MA22253 - MATHEMATICS FOR DATA SCIENCE

(Artificial Intelligence and Data Science)

CO1

CO 2

CO 3

CO4

CO 5

(Regulation2022)

TIME:3 HOURS MAX. MARKS: 100 COURSE STATEMENT RBT OUTCOMES LEVEL Perform operations on various discrete structures such as sets, functions and relations. 3 Test the logic of a programme, having acquired knowledge of the necessary concepts.. 3 Identify structures on many levels as an application of the concepts and properties of 3 algebraic structures. Apply the basic notions of groups, rings, fields which will be used to solve related 3 problems. Execute the simplification of Boolean algebraic expression. 3

PART- A(20x2=40Marks)

(Answer all	Questions)
-------------	------------

		CO	RBT LEVEL
1.	Find all the partitions of $\{x, y, z\}$ and list them.	1	2
2.	If $A = \{0, 1\}$, $B = \{0, -1\}$ then find $A \times B \& B \times A$. Are they equal?	1	2
3.	Let $f: R \rightarrow R$ defined by $f(x) = x^2 + 1$. Find $f^{-1}(10)$ and $f^{-1}(-4)$	1	2
4.	Let $f(x) = x + 5$, $g(x) = 2x + 3$. Compute $f \circ g \& g \circ f$	1	2
5.	Express the statement "Good food is not cheap" in symbolic form	2	2
6.	Negate the statement: "John is playing football" in two different forms	2	2
7.	Write the converse and contra-positive of the conditional statement: Indian Criket team wins whenever match is played in Kolkata	2	2
8.	Find the truth value of $(x)(P \rightarrow Q(x)) \lor (\exists x) R(x)$ where P:2 >1, Q(x) : x >3,	2	2
	$R(x) : x > 4$, with the universe of discourse is $E = \{2,3,4\}$		
9.	Find the orders of the elements (-1) and 3 in (R^*, \bullet) where $R^* = R - \{0\}$	3	2
10.	Verify whether $G = \{1,-1,i,-i\}$ is a cyclic group	3	3

- 11. Find all right cosets of $\{[0], [3]\}$ in the group (\mathbb{Z}_6)
- 12. Check whether the permutation $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 2 \end{pmatrix}$
- What is the degree of the polynomial $f(x) = 6x^3$ 13.
- What is the remainder when $f(x) = x^5 + 2x^3 + x$ 14.
- 15. Is $f(x) = x^3 + x + 4 \in \mathbb{Z}_2[x]$ over Z and C irreducib
- 16. What are the units in the ring (Q, +, x)
- Draw the Hasse diagram for $\{(a,b)/a \text{ divides } b\}$ o 17.
- Prove that $(Z^+, |)$ is Poset where Z^+ is a set of pos 18.
- Apply Demorgan's law for 19. $\overline{[(x+\overline{y})(\overline{x}+y)]}$
- **20.** Check whether $D_{12} = \{1, 2, 3, 4, 6, 12\}$ is a finite Boo

PART- B (5x 1

21. (a) Let R be a binary relation on the set of pe $R = \{(a,b)/a = b^2\}$. What are the properties of R? Is R an equivalence relation? Partial ordering?

(**OR**)

(b) If $S = \{1, 2, 3, 4, 5\}$ and if $f, g, h : S \to S$ are given by $f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\}. g = \{(1,3), (2,5), (3,1), (4,2), (5,4)\}.$ $h = \{(1,2), (2,2), (3,4), (4,3), (5,1)\}$. Verify whether $f \circ g = g \circ f$ (i)explain why f and g has inverse but h does not (ii) find $f^{-1} \& g^{-1}$ (iii)prove that

$$\left(f\circ g\right)^{\!-\!1}=g^{-\!1}\circ f^{-\!1}\neq f^{-\!1}\circ g^{-\!1}$$

- 22. (a) Establish the relation $p \rightarrow (q \rightarrow r) \Rightarrow (p \rightarrow q)$ (**OR**)
- (b) Test the validity of the following: "Sonia is watching TV. If Sonia is (10) 2 watching a TV, then she is not studying. If she is not studying, then her father will not buy her a scooty. Therefore, Sonia's father will not buy her a scooty"

Q. Co	Q. Code:659750		
$(_{6},+_{6})$	3	2	
) is odd or even?	3	2	
$x^{3} + 5x^{2} + 3x - 2$ over Z_{6}	4	2	
$x^2 + 2x + 3 \in \mathbb{Z}_5[x]$ is divided by $x-1$	4	2	
ble?	4	2	
	4	2	
on the set {1, 2, 3, 4, 6, 8, 12}	5	2	
sitive integers.	5	3	
	5	2	
oolean algebra.	5	2	
10=50Marks)			
Marks	CO	RBT LEVEL	
f positive integers such that (10)	1	3	

(10) 1 3

$$(p \rightarrow r)$$
 (10) 2 3

3

Q. Code:659750

23. (a)	Prove that the non- zero elements of Z_7 is a group under multiplication	(10)	3	3
(b)	(OR) Determine (i) $\alpha\beta$ (ii) α^{3} (iii) β^{4} (iv) α^{-1} and β^{-1} (v) $(\alpha\beta)^{-1}$, $\beta^{-1}\alpha^{-1}$ In a group S ₅ ={1,2,3,4,5} where $(1 \ 2 \ 3 \ 4 \ 5)$ $(1 \ 2 \ 3 \ 4 \ 5)$	(10)	3	3
	$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \& \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}$			
24. (a)	Find $[777]^{-1}$ in the ring Z_{1009}	(10)	4	3
	(OR)		_	_
(b)	Test the polynomial $x^2 + x + 4 \in Z_{11}[x]$ for irreducibility over Z_{11}	(10)	4	3
25. (a)	Given P(S), the set of all sub sets of S={a,b,c} and \subseteq , the inclusion relation on S (i)Show that (P(S), \subseteq) is a poset (ii) Draw the Hasse diagram of the poset(iii) Find the minimal and maximal element and a chain of length 3 (OR)	(10)	5	3
(b)	Let $B = D_{30} = \{1, 2, 3, 6, 10, 12, 15, 30\}$, the divisors of 30 with the divisibility	(10)	5	3
	as order. For any $a, b \in B$, $a + b = lcm(a,b)$, $a.b = gcd(a,b)$, $a' = \frac{30}{a}$,			
	Verify that $(B, +, ., ', 1, 30)$ is a Boolean Algebra			

<u>PART- C (1x 10=10Marks)</u>

(Q.No.26 is compulsory)

		Marks	CO	RBT	
				LEVEL	
26.	Verify whether the compound proposition $(p \lor q) \rightarrow (p \land q)$ is a tautology	(10)	2	3	
	or a contradiction. Also find the PDNF and PCNF of the same if it exists.				

Q. Code:659750