

B.E./ B. TECH DEGREE EXAMINATIONS, MAY 2023

First Semester

MR22201 - THERMAL ENGINEERING FOR MARINE ENGINEERS

(Use of Steam Tables and Mollier Diagram are permitted)

(Regulation 2022)

TIME: 3 HOURS

COURSE OUTCOMES	STATEMENT	$\stackrel{\text { RBT }}{\text { Level }}$
CO 1	Students should be able to understand the first law of thermodynamics along with engineering applications	4
CO 2	Students should be able to recognize heat engines, heat pumps and refrigerators and applications of the second law of thermodynamics	3
CO 3	Students should be able to comprehend the steam formation process, properties of steam and its application to Rankine cycle	3
CO 4	Students should be able to analyze various air standard cycles and their application	3
CO 5	Students should be able to know the vapour compression refrigeration cycle and its analysis	3

PART- A(20x2=40Marks)

(Answer all Questions)

1. Define the term specific property with an example.
2. State the Zeroth Law of Thermodynamics. $\quad \mathbf{1} \quad \mathbf{1}$
3. What do you understand by an Isobaric process? $\quad \mathbf{1} \quad 2$
4. How do you determine the displacement work? $\quad \mathbf{1} \quad \mathbf{2}$
5. Differentiate between a reversible and irreversible process. $\mathbf{2} \quad \mathbf{2}$
6. State the limitations of First law of Thermodynamics. $\quad \mathbf{2} \mathbf{1}$
7. What is meant by Thermal Energy reservoir? Give an example. $\quad \mathbf{2} \quad \mathbf{2}$
8. What do you infer from the Clausius statement of second law of Thermodynamics? $\mathbf{2} \quad \mathbf{2}$
9. How do you calculate the term dryness fraction? $\quad \mathbf{3} \quad 2$
$\begin{array}{llll}\text { 10. Write the Gibbs phase rule and expand the terms. } & \mathbf{3} & \mathbf{2}\end{array}$
10. What happens to saturation temperature and freezing point of a liquid with an increase in $\quad \mathbf{3} \quad \mathbf{2}$ its saturation pressure?
11. What do you understand by the term "specific steam consumption"? $\quad \mathbf{3} \quad 2$
12. What is meant by Cut off ratio in the diesel cycle? 4
13. What is the significance of explosion ratio in the dual cycle? $4 \mathbf{2}$
14. Write the formula to determine efficiency of the Otto cycle with compression ratio. $4 \mathbf{2}$
15. What are the four processes that form the Carnot cycle? 4
16. What is the purpose of "Thermostatic expansion valve" in a Vapour compression $\mathbf{5} \quad \mathbf{2}$ refrigeration system?
17. What do you understand by the term "Coefficient of Performance"?

2
19. What are the desirable properties of Marine refrigerants?
20. How does Marine Refrigerants destroy the Ozone layer?

PART- B (5x 10=50Marks)

21. (a) Sketch a P-V diagram showing the following processes in a cycle
22. (a) Sketch a P-V diagram showing the following processes in a cycle (10) $\quad \mathbf{1}$

Process 1-2: isobaric work output of 10.5 kJ from an initial volume of 0.028 m^{3} and pressure 1.4 bar ,
Process 2-3: isothermal compression, and
Process 3-1: isochoric heat transfer to its original volume of $0.028 \mathrm{~m}^{3}$ and pressure 1.4 bar.

Calculate (a) the maximum volume in the cycle, in m^{3}, (b) the isothermal work, in kJ , (c) the network, in kJ , and (d) the heat transfer during isobaric expansion, in kJ .

(OR)

(b) Derive an expression for mass balance and energy balance in a simple steady \quad (10) $\quad \mathbf{1} \quad \mathbf{3}$ flow process.
22. (a) A Carnot heat engine receives 500 kJ of heat per cycle from a high-temperature
heat reservoir at $652^{\circ} \mathrm{C}$ and rejects heat to a low-temperature heat reservoir at $30^{\circ} \mathrm{C}$. Determine:
(a) The thermal efficiency of this Carnot engine
(b) The amount of heat rejected to the low-temperature heat reservoir.

(OR)

(b) Two reversible heat engines A \& B are arranged in series. Engine A rejecting (10) 2 heat directly to B. Engine A receives 200 kJ of heat at a temperature of $421^{\circ} \mathrm{C}$ from a hot source while engine B is in communication with a cold sink at a
temperature of $4.4^{\circ} \mathrm{C}$. If the work output of engine A is twice that of the engine
B, Find (i). Intermediate temperature between engines A \& B and (ii).
Efficiency of the engines A and B.
23. (a) (i) An ideal gas is contained in a closed assembly with an initial pressure and temperature of 220 kpa and $70^{\circ} \mathrm{C}$ respectively. If volume of the system is increased to 1.5 times of the initial volume and the temperature drops to $15^{\circ} \mathrm{C}$, determine the final pressure of the gas.
(ii) A closed assembly contains 2 kg of air at an initial pressure and temperature of 140 kpa and $210^{\circ} \mathrm{C}$ respectively. If volume of the system is doubled and temperature drops to $37^{\circ} \mathrm{C}$, determine the final pressure of the air. Air can be modeled as an ideal gas.

(OR)

(b) Two kg of steam at a pressure of 8 bar occupies a volume of $0.3 \mathrm{~m}^{3}$. If the air expands to a volume of $1.5 \mathrm{~m}^{3}$ according to the law $\mathrm{PV}^{1.35}=\mathrm{C}$. Calculate the work done and change in change in entropy during the process.
24. (a) Evaluate an expression for efficiency, work done and mean effective pressure of Otto cycle with usual notations.

(OR)

(b) An air-standard Diesel cycle has a compression ratio of 18 and a cut-off ratio of 2.5. The state at the beginning of compression is fixed by $\mathrm{P}=0.9$ bar and $\mathrm{T}=300 \mathrm{~K}$. Evaluate the following:
i) The thermal efficiency of the cycle,
ii) The maximum pressure, $\mathrm{P}_{\text {max }}$, and
iii) The mean effective pressure.
25. (a) Sketch and describe the working of Vapour compression refrigeration system (10) 5 3
and also Mention its advantages and disadvantages
(OR)
(b) (i) The temperature in a domestic refrigerator is to be maintained at $-10^{\circ} \mathrm{C}$. (7) $\mathbf{5}$ Ambient air temperature is $30^{\circ} \mathrm{C}$. If the heat leaving the refrigerator is 3 kW , determine the least power necessary to pump out this heat.
(ii) Determine the CoP of a heat pump if the rate of heat rejected is $360 \mathrm{~kJ} / \mathrm{min}$
(3) 5 and power supplied is 2 kW .

PART-C (1x 10=10Marks)

(Q.No. 26 is compulsory)
