

Q. Code: 512374

PART- B (5x 10=50Marks)

		Marks	CO	RBT LEVEL
21. (a)	Construct CO_2 laser and analyse its working principle with energy level diagram.	(10)	1	3
	(OR)			
(b)	Classify different types of optic fiber on the basis of modes and refractive index.	(10)	1	3
22. (a)	Derive an expression for the change in wavelength of an X-ray photon when it collides with an electron.	(10)	2	4
	(OR)			
(b)	Arrive at Schrodinger time independent and time dependent wave equation.	(10)	2	4
23. (a)	Brief about Miller indices and derive an expression for inter-planar spacing between two adjacent planes in a cubic lattice.	(10)	3	3
	(OR)			
(b)	Show that FCC systems are closely packed than BCC systems.	(10)	3	3
24. (a)	Derive an expression for the particle velocity and obtain the differential equation of the travelling waves.	(10)	4	3
	(OR)			
(b)	Compare and contrast the analogies between mechanical and electrical oscillating system with examples.	(10)	4	3
25. (a)	(i) Explain Poynting vector and derive an expression for Poynting theorem.	(5)	5	4
	(ii) Brief about the physical concept of electromagnetic energy density. (OR)	(5)	5	4
(b)	Using the laws of electromagnetism derive expressions for Maxwell's four general equations both in differential and integral form.	(10)	5	4
	<u>PART- C (1x 10=10Marks)</u>			
	(Q.No.26 is compulsory)	Marks	со	RBT
26.	Apply your knowledge of atomic transitions, evaluate the conditions for	(10)	1	level 5

stimulated emission and arrive the relations between Einstein's coefficients A and B.
